首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2013年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

This study aims to understand the contribution of ‘terroir’ during the cultivation of Vitis vinifera L. The concept of terroir stems from the French ideal that a region’s soil and local vineyard topography together with a region’s macroclimate, including the mesoclimate and vine microclimate, together define the unique characteristics of a wine. In this current study we have utilized high performance liquid chromatography combined with a Q Exactive quadrupole Orbitrap™ mass analyzer for the direct injection analysis of Vitis vinifera juice samples sourced from two different vineyards from the Santa Ynez AVA of Santa Barbara county. Analysis of the mass spectral data was facilitated by a differential analysis software program—SIEVE 2.0™. Distinct metabolomic signatures in freshly crushed juice samples were elucidated. Interestingly, important and distinct information was revealed from the analysis of both the positive and negative ion data. Hierarchical clustering indicated the negative ion data displayed similarity based on varietal character while results obtained in the positive ion mode clustered primarily on terroir. This may indicate that more acidic compounds are influenced by varietal character while more basic compounds are influenced by terroir. Using a feature of SIEVE 2.0 a flavonoid database was utilized to search the raw data for flavonoids present in the juice samples. This targeted analysis indicated the flavonoid profile of juice samples appears to be a good indicator of varietal character independent of terroir. The analysis presented in this study suggests distinct Vitis vinifera grape juice chemical signatures are present prior to fermentation. Further analysis will aim to attribute which of these compounds is influenced by varietal character and/or terroir.

  相似文献   
2.
Sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) of DNA is critical for obtaining high quality mass spectra. Sample impurity, solvent content, substrate surface and environmental conditions (temperature and humidity) all affect the rate of matrix–analyte co-crystallization. As a result, laser fluence threshold for desorption/ionization varies from spot to spot. When using 3-hydroxypicolinic acid (3-HPA) as the matrix, laser fluence higher than the threshold value reduces mass resolution in time-of-flight (TOF) MS as the excess energy transferred to DNA causes metastable decay. This can be overcome by either searching for ‘hot’ spots or adjusting the laser fluence. However, both solutions may require a significant amount of operator manipulation and are not ideal for automatic measurements. We have added various sugars for crystallization with the matrix to minimize the transfer of excess laser energy to DNA molecules. Fructose and fucose were found to be the most effective matrix additives. Using these additives, mass resolution for DNA molecules does not show noticeable deterioration as laser energy increases. Improved sample preparation is important for the detection of single nucleotide polymorphisms (SNPs) using primer extension with a single nucleotide. During automatic data acquisition it is difficult to routinely detect heterozygous A/T mutations, which requires resolving a mass difference of 9 Da, unless a sugar is added during crystallization.  相似文献   
3.
Unnatural amino acid mutagenesis requires the in vitro production of aminoacyl tRNAs. Bacteriophage T4 RNA ligase is used to ligate a-amino-protected dCA amino acids to 74mer tRNA. Previously, there has been no facile method for evaluating the efficiency of this reaction prior to using the tRNA in translation. We report a novel use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in monitoring the formation of aminoacyl 76mer tRNA. This method is more efficient and precise than the traditional technique of gel electrophoresis. These MALDI conditions should also prove useful for analyzing aminoacyl tRNAs produced through aminoacyl tRNA synthetases and other methods.  相似文献   
4.
Certain carbohydrates (rhamnose, 3-O-methyl rhamnose, and galactosamine) have been demonstrated to be present in Bacillus anthracis spores but absent in vegetative cells. Others have demonstrated that these spore-specific sugars are constituents of the glycoprotein BclA. In the current work, spore extracts were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A second collagen-like glycoprotein, BclB, was identified in B. anthracis. The protein moiety of this glycoprotein was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and the carbohydrate components by gas chromatography-mass spectrometry and tandem mass spectrometry. Spore-specific sugars were also demonstrated to be components of BclB.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号