首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   11篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 156 毫秒
1.
Two series of chalcone/aryl carboximidamide hybrids 4a–f and 6a–f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.  相似文献   
2.

Background

The anatomy of PFO suggests that it can allow thrombi and potentially harmful circulatory factors to travel directly from the venous to the arterial circulation – altering circulatory phenotype. Our previous publication using high-resolution LC-MS/MS to profile protein and peptide expression patterns in plasma showed that albumin was relatively increased in donor samples from PFO-related than other types of ischemic strokes. Since albumin binds a host of molecules and acts as a carrier for lipoproteins, small molecules and drugs, we decided to investigate the albumin-bound proteins (in a similar sample cohort) in an effort to unravel biological changes and potentially discover biomarkers related to PFO-related stroke and PFO endovascular closure.

Methods

The method used in this study combined albumin immuno-enrichment with high resolution LC-MS in order to specifically capture and quantify the albumin-bound proteins. Subsequently, we measured cholesterol and HDL in a larger, separate cohort of PFO stroke patients, pre and post closure.

Results

The results demonstrated that a number of proteins were specifically associated with albumin in samples with and without endovascular closure of the PFO, and that the protein profiles were very different. Eight proteins, typically associated with HDL were common to both sample sets and quantitatively differently abundant. Pathway analysis of the MS results suggested that enhanced cholesterol efflux and reduced lipid oxidation were associated with PFO closure. Measurement of total cholesterol and HDL in a larger cohort of PFO closure samples using a colorimetric assay was consistent with the proteomic predictions.

Conclusions

The collective data presented in this study demonstrate that analysis of albumin-bound proteins could provide a valuable tool for biomarker discovery on the effects of PFO endovascular closure. In addition, the results suggest that PFO endovascular closure can potentially have effects on HDL, cholesterol and albumin-bound ApoA-I abundance, therefore possibly providing benefits in cardioprotective functions.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-12-2) contains supplementary material, which is available to authorized users.  相似文献   
3.
Recent studies from our laboratory have shown that alcohol and burn injury impair intestinal barrier and immune functions. Although multiple factors can contribute to impaired intestinal barrier function, such an alteration could result from a decrease in intestinal blood flow (BF) and oxygen delivery (DO2). Therefore, in this study, we tested the hypothesis that alcohol ingestion before burn injury reduces splanchnic blood flow and oxygen delivery. Rats (250 g) were gavaged with alcohol to achieve a blood ethanol level in the range of 100 mg/dl before burn or sham injury (25% total body surface area). Day 1 after injury, animals were anesthetized with methoxyflurane. Blood pressure, cardiac output (CO), +/-dP/dt, organ BF (in ml.min(-1).100 g(-1)), and DO2 (in mg.ml(-1).100 g(-1)) were determined. CO and organ BF were determined using a radioactive microsphere technique. Our results indicate that blood pressure, CO, and +dP/dt were decreased in rats receiving a combined insult of alcohol and burn injury compared with rats receiving either burn injury or alcohol alone. This is accompanied by a decrease in BF and DO2 to the liver and intestine. No significant change in BF to the coronary arteries (heart), brain, lung, skin, and muscles was observed after alcohol and burn injury. In conclusion, the results presented here suggest that alcohol ingestion before burn injury reduces splanchnic BF and DO2. Such decreases in BF and DO2 may cause hypoxic insult to the intestine and liver. Although a hypoxic insult to the liver would result in a release of proinflammatory mediators, a similar insult to the intestine will likely perturb both intestinal immune cell and barrier functions, as observed in our previous study.  相似文献   
4.
5.
The recombinant enzyme lichenase of size 30 kDa was over-expressed using E. coli cells and purified by immobilized metal ion affinity chromatography (IMAC) and size exclusion chromatography. The enzyme displayed high activity towards lichenan and β-glucan. The enzyme showed no activity towards carboxymethyl cellulose, laminarin, galactomannan or glucomannan. Surprisingly, affinity-gel electrophoresis on native-PAGE showed that the enzyme binds only glucomannan and not lichenan or β-glucan or other manno-configured substrates. The enzyme was thermally stable between the temperatures 60°C and 70°C. Presence of Cu2+ ions at a concentration of 5 mM enhanced enzyme activity by 10% but higher concentrations of Cu2+ (>25 mM) showed a sharp fall in the enzyme activity. Heavy metal ions Ni2+, Co2+ and Zn2+ did not affect the activity of the enzyme at low concentrations (0–10 mM) but at higher concentrations (>10 mM), caused a decrease in the enzyme activity. The crystals of lichenase were produced and the 3-dimensional structure of native form of enzyme was previously solved at 1.50 Å. Lichenase displayed (β/α)8-fold a common fold among many glycoside hydrolase families. A cleft was identified that represented the probable location of active site.  相似文献   
6.
The human eye serves distinctly dual roles in image forming (IF) and non-image-forming (NIF) responses when exposed to light. Whereas IF responses mediate vision, the NIF responses affect various molecular, neuroendocrine, and neurobehavioral variables. NIF responses can have acute and circadian phase-shifting effects on physiological variables. Both the acute and phase-shifting effects induced by photic stimuli demonstrate short-wavelength sensitivity peaking ≈450-480 nm. In the current study, we examined the molecular, neuroendocrine, and neurobehavioral effects of completely filtering (0% transmission) all short wavelengths <480 nm and all short wavelengths <460 nm or partially filtering (~30% transmission) <480 nm from polychromatic white light exposure between 2000 and 0800 in healthy individuals. Filtering short wavelengths <480 nm prevented nocturnal light-induced suppression of melatonin secretion, increased cortisol secretion, and disrupted peripheral clock gene expression. Furthermore, subjective alertness, mood, and errors on an objective vigilance task were significantly less impaired at 0800 by filtering wavelengths <480 nm compared with unfiltered nocturnal light exposure. These changes were not associated with significantly increased sleepiness or fatigue compared with unfiltered light exposure. The changes in molecular, endocrine, and neurobehavioral processes were not significantly improved by completely filtering <460 nm or partially filtering <480 nm compared with unfiltered nocturnal light exposure. Repeated light-dark cycle alterations as in rotating nightshifts can disrupt circadian rhythms and induce health disorders. The current data suggest that spectral modulation may provide an effective method of regulating the effects of light on physiological processes.  相似文献   
7.
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.  相似文献   
8.
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes.  相似文献   
9.
10.
A series of 1,2,4-triazole derivatives containing thiosemicarbazone linkage was synthesized and evaluated for their in vitro antiamoebic activity against HM1:IMSS strain of Entamoeba histolytica. All the compounds were capable of inhibiting the growth of E. histolytica out of which four compounds (IC(50)=0.28-1.38 μM) were found to have better efficacy than the standard drug Metronidazole (IC(50)=1.8 μM). Cytotoxicity of the active compounds was assessed by MTT assay using human breast cancer MCF-7 cell line, which revealed that all the compounds were low cytotoxic in the concentration range of 2.5-250 μM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号