首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Molecular Biology Reports - Metabolic syndrome (MetS) is associated with a pro-inflammatory state and endothelial dysfunction that places subjects with MetS at a higher risk of atherosclerosis....  相似文献   
2.
3.
The distribution of protochlorophyllide (Pchlide) and NADPH-Pchlideoxidoreductase (POR) was characterized in the epicotyls androots of wild-type pea (Pisum sativum L. cv. Alaska) and lip1,a mutant with light-independent photomorphogenesis caused bya mutation in the COP1 locus. The upper part of the dark-grownlip1 mutant epicotyls had a high Pchlide content that decreaseddownward the organ. The elevated Pchlide level in lip1 seedlingswas a result of the differentiation of more proplastids intoPchlide-containing plastids. The cortex cells in the lip1 epicotylwere filled with such plastids in contrast to the cortex cellsof wild-type seedlings. The mutant also developed Pchlide-containingplastids in the roots, indicating the suppressing effect ofthe COP1 locus on development of plastids in the correspondingtissues in dark-grown wild-type plants. The distribution ofPchlide-containing plastids in dark-grown lip1 mutant stem androot was similar to the distribution of chloroplasts in irradiatedwild-type plants. Both wild-type and lip1 epicotyls containedmostly short wavelength Pchlide fluorescing at 631 nm withonly a small shoulder at 654 nm, which was transformedto a minute amount of chlorophyllide (Chlide) by flash irradiation.In contrast, with continuous irradiation a considerable amountof Chlide was formed especially in the lip1 epicotyls. Immunoblotsindicated the presence of POR, as a 36 kDa band, in epicotylsof both dark-grown wild-type and lip1 mutant seedlings. However,lip1 stem tissue had a higher content of POR than the wild-typepea. The high content of POR was unexpected as lip1 lacked boththe 654 nm fluorescing Pchlide form and the regular PLBs.In light, a significant amount of chlorophyll was formed alsoin the roots of the lip1 seedlings. 3 Corresponding author: E-mail, mahdi.seyedi@molbio.gu.se; Fax,+46-31-773-2626.  相似文献   
4.
A group of 2-alkoxy-5-methoxyallylbenzene were designed, synthesised and evaluated as potential inhibitors of the soybean 15-lipoxygenase (SLO) on the basis of the eugenol and esteragol structures. Compound 4d showed the best half maximal inhibitory concentration (IC??) for SLO inhibition (IC???=?5.9?±?0.6 μM). All the compounds were docked in the SLO active site retrieved from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB entry: 1IK3) and showed that the allyl group of the synthetic compounds similar to the linoleic acid double bond, were oriented toward the Fe3+-OH moiety in the active site of the enzyme and this conformation was especially fixed by the hydrophobic interaction of the 2-alkoxy group with Leu?1?, Trp?1?, Val??? and Ile??2. It was concluded that the molecular volume and shape of the alkoxy moiety was a major factor in the inhibitory potency variation of the synthetic compounds.  相似文献   
5.
6.
When grown in darkness the photomorphogenic lip 1 mutant of pea ( Pisum sativum L.) has a slender stem, expanded leaves, prolamellar body (PLB) lacking plastids with the size of chloroplasts and a low level of phytochrome A. The lack of PLBs in a dark-grown material ( lip 1) created a possibility to further study the regulation of their formation in relation to plant development. Inclusion of a cytokinin, 2-isopentenyladenine (2iP), in a medium supporting growth of the pea seedlings in darkness was found to reduce epicotyl length in the wild type. In lip 1 the formation of a slender stem was inhibited and a short epicotyl developed. Furthermore, leaf expansion was inhibited, the plastid size reduced and the formation of PLBs induced. The PLB formation in lip 1 was not accompanied by an increase in the amount of protochlorophyllide (Pchlide) or Pchilde oxidoreductase (POR). In the presence of 2iP the level of phytochrome A protein was increased in lip 1 and the POR mRNA levels decreased in both lip 1 and wild-type plants. The chloroplast characteristic trans -3-hexadecenoate acyl group of phosphatidylglycerol, present in the plastids of dark-grown lip 1, was not influenced by 2iP. Thus, not all photomorphogenic processes reacted similarly in the lip 1 mutant, but leaf expansion and plastid differentiation, including PLB formation, seemed to be regulated by the same signal transduction chain. Exogenously applied brassinolide could rescue neither dark- nor light-grown defects of the lip 1 mutant. Thus, cytokinins but not brassinolides seem to be involved in the regulation of certain characteristic traits of skotomorphogenesis in pea, including plastid development and PLB formation.  相似文献   
7.
Crocus sativus corms were grown in Perlite and watered by half-strength modified Hoagland nutrient solution containing 0, 50, 100, 150, 200 mM NaCl. Growth parameters and contents of proteins, proline, polyphenols, minerals and saccharides were studied in fibrous roots, contractile roots, corms and leaves. All plants remained alive and did not display any sign of foliar damage even at 200 mM NaCl. However, the salinity decreased growth, relative water content and increased contents of proline and Na+ in all organs. Total protein content was increased in corms and contractile roots but decreased in fibrous roots. Changes in protein pattern were also observed. Polyphenol content was increased by salinity in all organs except the leaves. As salinity increased, content of soluble saccharides decreased except in the contractile roots.  相似文献   
8.
A group of 4-allyloxyaniline amides 5ao were designed, synthesized and evaluated as potential inhibitors of soybean 15-lipoxygenase (SLO) on the basis of eugenol and esteragol structures. Compound 5e showed the best IC50 in SLO inhibition (IC50 = 0.67 ± 0.06 μM). All compounds were docked in SLO active site retrieved from RCSB Protein Data Bank (PDB entry: 1IK3) and showed that allyloxy group of compounds is oriented towards the Fe3+-OH moiety in the active site of enzyme and fixed by hydrogen bonding with two conserved His513 and Gln716. It is resulted that molecular volume of the amide moiety would be a major factor in inhibitory potency variation of the synthetic amides, where the hydrogen bonding of the amide group could also involve in the activity of the inhibitors.  相似文献   
9.
Recently, we examined normal human pancreas tissue for DNA adducts derived from either exogenous chemical exposure and/or endogenous agents. In an effort to explain the different types and levels of DNA adducts formed in the context of individual susceptibility to cancer, we have focused on gene-environment interactions. Here, we report on the levels of hydrophobic aromatic amines (AAs), specifically those derived from 4-aminobiphenyl (ABP), and DNA adducts associated with oxidative stress in human pancreas. Although these adducts have been reported in several human tissues by different laboratories, a comparison of the levels of these adducts in the same tissue samples has not been performed. Using the same DNA, the genotypes were determined for N-acetyltransferase 1 (NAT1), the glutathione S-transferase (GST) M1, GSTP1, GSTT1, and NAD(P)H quinone reductase-1 (NQO1) as possible modulators of adduct levels because their gene products are involved in the detoxification of AAs, lipid peroxidation products and in redox cycling. These results indicate that ABP-DNA adducts, malondialdehyde-DNA adducts, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) adducts are present at similar levels. Of the metabolic genotypes examined, the presence of ABP-DNA adducts was strongly associated with the putative slow NAT1*4/*4 genotype, suggesting a role for this pathway in ABP detoxification.  相似文献   
10.
In ischemia, cardiac sympathetic nerve endings (cSNE) release excessive amounts of norepinephrine (NE) via the nonexocytotic Na(+)-dependent NE transporter (NET). NET, normally responsible for NE reuptake into cSNE, reverses in myocardial ischemia, releasing pathological amounts of NE. This carrier-mediated NE release can be triggered by elevated intracellular Na(+) levels in the axoplasm. The fact that ischemia activates the intracellular pH regulatory Na(+)/H(+) exchanger (NHE) in cSNE is pivotal in increasing intraneuronal Na(+) and thus activating carrier-mediated NE release. Angiotensin (ANG) II levels are also significantly elevated in the ischemic heart. However, the effects of ANG II on cSNE, which express the ANG II receptor, AT(1)R, are poorly understood. We hypothesized that ANG II-induced AT(1)R activation in cSNE may be positively coupled to NHE activity and thereby facilitate the pathological release of NE associated with myocardial ischemia. We tested this hypothesis in a cSNE model, human neuroblastoma cells stably transfected with rat recombinant AT(1A) receptor (SH-SY5Y-AT(1A)). SH-SY5Y-AT(1A) constitutively expresses amiloride-sensitive NHE and the NET. NHE activity was assayed in BCECF-loaded SH-SY5Y-AT(1A) as the rate of the Na(+)-dependent alkalinization in response to an acute acidosis. ANG II activation of AT(1)R markedly increased NHE activity in SH-SY5Y-AT(1A) via a Ca(2+)-dependent pathway and promoted carrier-mediated NE release. In addition, in guinea pig cSNE expressing native AT(1)R, ANG II elicited carrier-mediated NE release. In SH-SY5Y-AT(1A) and cSNE, amiloride inhibited the ANG II-mediated release of NE. Our results provide a link between AT(1)R and NHE in cSNE, which can exacerbate carrier-mediated NE release during protracted myocardial ischemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号