首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   9篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
2.
3.
The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.  相似文献   
4.
Oligonucleotide microarrays in microbial diagnostics   总被引:7,自引:0,他引:7  
Oligonucleotide microarrays offer a fast, high-throughput alternative for the parallel detection of microbes from virtually any sample. The application potential spreads across most sectors of life sciences, including environmental microbiology and microbial ecology; human, veterinary, food and plant diagnostics; water quality control; industrial microbiology, and so on. The past two years have witnessed a rapid increase of research in this field. Many alternative techniques were developed and validated as seen in 'proof-of-concept' articles. Publications reporting on the application of oligonucleotide microarray technology for microbial diagnostics in microbiology driven projects have just started to appear. Current and future technical and bioinformatics developments will inevitably improve the potential of this technology further.  相似文献   
5.
6.
Use of marker genes has several advantages in studying rhizobial competition compared to traditional approaches. Reporter genes such as the ß-glucuronidase gene (gusA) or a thermostable ß-glucosidase gene (celB) allow detection of rhizobial strains in nodules when they are still attached to the root system. Analysis is extremely simple, fast and permits a high data throughput. This detection technique is therefore highly suitable for the study of rhizobial competition and studies using gusA-marked strains of Rhizobium are presented. By making use of gusA and celB, differentially marked strains can be produced and distinguished easily on roots. The availability of two marker genes permits competition studies of two or more than two strains and analysis of dual nodule occupancy. As this methodology does not require sophisticated equipment, a GUS Gene Marking Kit was developed.  相似文献   
7.
It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.  相似文献   
8.
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.  相似文献   
9.
A method was developed for the mRNA-based application of microbial diagnostic microarrays to detect active microbial populations. DNA- and mRNA-based analyses of environmental samples were compared and confirmed via quantitative PCR. Results indicated that mRNA-based microarray analyses may provide additional information on the composition and functioning of microbial communities.  相似文献   
10.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号