首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45°. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45°. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.  相似文献   
3.
In general, leaf wetness duration (LWD) is a key parameter influencing plant disease epidemiology, since it provides the free water required by pathogens to infect foliar tissue. LWD is used as an input in many disease warning systems, which help growers to decide the best time to spray their crops against diseases. Since there is no observation standard either for sensor or exposure, LWD measurement is often problematic. To assess the performance of electronic sensors, LWD measurements obtained with painted cylindrical and flat plate sensors were compared under different field conditions in Elora, Ontario, Canada, and in Piracicaba, São Paulo, Brazil. The sensors were tested in four different crop environments—mowed turfgrass, maize, soybean, and tomatoes—during the summer of 2003 and 2004 in Elora and during the winter of 2005 in Piracicaba. Flat plate sensors were deployed facing north and at 45° to horizontal, and cylindrical sensors were deployed horizontally. At the turfgrass site, both sensors were installed 30 cm above the ground, while at the crop fields, the sensors were installed at the top and inside the canopy (except for maize, with a sensor only at the top). Considering the flat plate sensor as a reference (Sentelhas et al. Operational exposure of leaf wetness sensors. Agric For Meteorol 126:59–72, 2004a), the results in the more humid climate at Elora showed that the cylindrical sensor overestimated LWD by 1.1–4.2 h, depending on the crop and canopy position. The main cause of the overestimation was the accumulation of big water drops along the bottom of the cylindrical sensors, which required much more energy and, consequently, time to evaporate. The overall difference between sensors when evaporating wetness formed during the night was around 1.6 h. Cylindrical sensors also detected wetness earlier than did flat plates—around 0.6 h. Agreement between plate and cylinder sensors was much better in the drier climate at Piracicaba. These results allow us to caution that cylindrical sensors may overestimate wetness for operational LWD measurements in humid climates and that the effect of other protocols for angling or positioning this sensor should be investigated for different crops.  相似文献   
4.
Viticulture has been expanding in tropical regions. However, the climate in these areas is generally favourable to the incidence of plant diseases, especially downy mildew. Plastic covers and warning systems have shown very positive results in disease control, but they are tools that have never been used simultaneously in a tropical area. The Vitis vinifera cv. BRS Morena table grape was evaluated as regards yield and quality under different downy mildew control strategies as carried out on vineyards trained on an overhead trellis system, covered by a black shading screen (BSS) or a braided polypropylene film (BPF), over a 3‐year period. Different grapevine downy mildew management approaches defined the treatments: Co) Control (no spraying); Ca) Conventional control (calendar); Ba) “Rule 3–10” (Atti Istituto Botanico, 8, 1947, 45); Ma25) Low‐infection efficiency—i0>25%; and Ma75) High‐infection efficiency—i0>75% (Plant Disease, 84, 2000, 549). The occurrence of downy mildew and the amount of damage inflicted on vine yield and grape quality are directly related to the period of the crop cycle when there is rainfall. The use of the Ma75 warning system (Plant Disease, 84, 2000, 549) under braided polypropylene film resulted, for the most part, in similar vineyard productivity compared to Ca, but did not influence the number of branches and its fertility. The other warning systems decreased productivity by 31.9% compared to Ca. It was not possible to establish a relationship between the occurrence of downy mildew and its influence on grape sweetness and acidity. The use of warning systems led to a substantial reduction in fungicide sprays, approximately 66.7 to 71.3%, compared to the calendar system commonly used by the vine growers, with the Ba (Atti Istituto Botanico, 8, 1947, 45) and Ma75 controls (Plant Disease, 84, 2000, 549) leading to the highest fungicide saving.  相似文献   
5.
As jatropha (Jatropha curcas L.) is a recent crop in Brazil, the studies for defining its suitability for different regions are not yet available, even considering the promises about this plant as of high potential for marginal zones where poor soils and dry climate occur. Based on that, the present study had as objective to characterize the climatic conditions of jatropha’s center of origin in Central America for establishing its climatic requirements and to develop the agro-climatic zoning for this crop for some Brazilian regions where, according to the literature, it would be suitable. For classifying the climatic conditions of the jatropha’s center of origin, climate data from 123 weather stations located in Mexico (93) and in Guatemala (30) were used. These data were input for Thornthwaite and Mather’s climatological water balance for determining the annual water deficiency (WD) and water surplus (WS) of each location, considering a soil water-holding capacity (SWHC) of 100 mm. Mean annual temperature (T m), WD, and WS data were organized in histograms for defining the limits of suitability for jatropha cultivation. The results showed that the suitable range of T m for jatropha cultivation is between 23 and 27 °C. T m between 15 and 22.9 °C and between 27.1 and 28 °C were classified as marginal by thermal deficiency and excess, respectively. T m below 15 °C and above 28 °C were considered as unsuitable for jatropha cultivation, respectively, by risk of frosts and physiological disturbs. For WD, suitability for rain-fed jatropha cultivation was considered when its value is below 360 mm, while between 361 and 720 mm is considered as marginal and over 720 mm unsuitable. The same order of suitability was also defined for WS, with the following limits: suitable for WS up to 1,200 mm; marginal for WS between 1,201 and 2,400 mm, and unsuitable for WS above 2,400 mm. For the crop zoning, the criteria previously defined were applied to 1,814 climate stations in the following Brazilian regions: Northeast (NE) region and the states of Goiás (GO), Tocantins (TO), and Minas Gerais (MG). The suitability maps were generated by crossing the crop climate requirements with the interpolated climate conditions of the selected regions. The maps showed that only 22.65 % of the areas in the NE region are suitable for jatropha as a rain-fed crop. The other areas of the region are classified as marginal (62.61 %) and unsuitable (14.74 %). In the states of GO and TO, the majority of the areas (47.78 %) is classified as suitable, and in the state of MG, 33.92 % of the territory has suitability for the crop. These results prove that jatropha cannot be cultivated everywhere and will require, as any other crop, minimum climatic conditions to have sustainable performance and high yields.  相似文献   
6.
International Journal of Biometeorology - The concept of yield gaps provides a basis for identifying the main sources of production losses, caused by water or management deficiencies, which may...  相似文献   
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号