首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2011年   2篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有31条查询结果,搜索用时 281 毫秒
1.
Proteinase inhibitors I and II were purified to electrophoretic homogeneity from leaves of tomato plants induced by either wounding intact plants or by supplying excised plants with the proteinase inhibitor inducing factor. Affinity chromatography with chymotrypsin-Sepharose was employed as a final purification step for each inhibitor. The tomato leaf inhibitors are very similar to potato tuber inhibitors I and II in subunit molecular weight, composition, and inhibitory activities against chymotrypsin, trypsin, and subtilisin. However, unlike the potato tuber which contains multiple isoinhibitors by isoelectric focusing, the tomato leaf exhibits only two isoinhibitor forms of inhibitor I and a single form of inhibitor II. The molecular weight of native potato inhibitor I was reevaluated by rigorous ultracentrifugal analysis and compared with data from previous analyses. The data confirm that native inhibitor I has a native Mr of about 41,000 and is a pentamer. Inhibitor II has a molecular weight of near 23,000 and is a dimer.  相似文献   
2.
Physico-chemical characterization of the sex steroid-binding protein, SBP, of rabbit plasma reveals that it is a dimer of mol. wt 85,800 composed of similar subunits of mol. wt 43,000. These data confirm our original proposal for a dimeric structure. The protein contains 9% carbohydrate, comprised of mannose, galactose, N-acetylglucosamine and sialic acid. It is devoid of N-acetylgalactosamine and fucose. The protein binds one molecule of 5 alpha-dihydrotestosterone per dimer with a Kd of 0.89 nM (12 degrees C). Comparison with the human, monkey and baboon SBPs indicates that all these proteins have the same dimeric molecular organization and exhibit microheterogeneity in SDS-PAGE and isoelectricfocusing. Rabbit SBP, however, contains less carbohydrate and has a higher polypeptide molecular weight than all the other SBPs. Spectrophotometric data also indicate that some tryptophan residues are in a different chemical environment than those in other SBPs. The observed microheterogeneity in all four SBP species is due for the most part to variable glycosylation of the subunit and variability at the amino-terminal region of the subunit. Combination of these and other phenomena will generate a significant number of isomeric forms of the SBP subunit which will then interact stoichiometrically to yield active dimeric SBP molecules. These differ slightly from each other depending upon the charge and size of the subunit comprising the dimeric structure, and will result in the observed microheterogeneity of pure SBP preparations. Based on these results along with more recent amino acid sequence data, we conclude that all four SBPs are dimers composed of identical polypeptide chains.  相似文献   
3.
We have investigated the question of whether the gel mobility-shift assay can provide data that are useful to the demonstration of cooperativity in the site-specific binding of proteins to DNA. Three common patterns of protein-DNA interaction were considered: (i) the cooperative binding of a protein to two sites (illustrated by the Escherichia coli Gal repressor); (ii) the cooperative binding of a bidentate protein to two sites (illustrated by the E. coli Lac repressor); and (iii) the cooperative binding of a protein to three sites (illustrated by the lambda cI repressor). A simple, rigorous, and easily extendable statistical mechanical approach to the derivation of the binding equations for the different patterns is presented. Both simulated and experimental data for each case are analyzed. The mobility-shift assay provides estimates of the macroscopic binding constants for each step of ligation based on its separation of liganded species by the number of ligands bound. Resolution of the binding constants depends on the precision with which the equilibrium distribution of liganded species is determined over the entire range of titration of each of the sites. However, the evaluation of cooperativity from the macroscopic binding constants is meaningful only for data that are also accurate. Some criteria that are useful in evaluating accuracy are introduced and illustrated. Resolution of cooperative effects is robust only for the simplest case, in which there are two identical protein binding sites. In this case, cooperative effects of up to 1,000-fold are precisely determined. For heterogeneous sites, cooperative effects of greater than 1,000-fold are resolvable, but weak cooperativity is masked by the heterogeneity. For three-site systems, only averaged pair-wise cooperative effects are resolvable.  相似文献   
4.
5.
6.
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236–39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379–401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF–DNA interfaces while the resulting energetic compensation maintains the same net binding energy.  相似文献   
7.
Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.   相似文献   
8.
Proteins that bind to specific locations in genomic DNA control many basic cellular functions. Proteins detect their binding sites using both direct and indirect recognition mechanisms. Deformation energy, which models the energy required to bend DNA from its native shape to its shape when bound to a protein, has been shown to be an indirect recognition mechanism for one particular protein, integration host factor (IHF). This work extends the analysis of deformation to two other DNA-binding proteins, CRP and SRF, and two endonucleases, I-Crel and I-Ppol. Known binding sites for all five proteins showed statistically significant differences in mean deformation energy as compared to random sequences. Binding sites for the three DNA-binding proteins and one of the endonucleases had mean deformation energies lower than random sequences. Binding sites for I-Ppol had mean deformation energy higher than random sequences. Classifiers that were trained using the deformation energy at each base pair step showed good cross-validated accuracy when classifying unseen sequences as binders or nonbinders. These results support DNA deformation energy as an indirect recognition mechanism across a wider range of DNA-binding proteins. Deformation energy may also have a predictive capacity for the underlying catalytic mechanism of DNA-binding enzymes  相似文献   
9.
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号