首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2003年   2篇
  2002年   1篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有55条查询结果,搜索用时 559 毫秒
1.
Summary The reproductive strategy of the salamander Ambystoma talpoideum was studied on an age-specific basis in five breeding populations using ponds subjected to different annual probabilities of drying. Ambystoma talpoideum is facultatively paedomorphic in semi-permanent ponds but sexually mature individuals occur only as terrestrial morphs in temporary ponds. Larvae of paedomorphs and terrestrial morphs mature at the same age but different body sizes. Body mass and snout-vent length increased with age in both morphs. One-year old terrestrial morphs had larger snoutvent lengths than 1-year-old paedomorphs but were smaller in body mass. Clutch mass, number of ova, and diameter of ova increased with snout-vent length. After removing the effects of snout-vent length with an analysis of covariance, only the diameter of ova and the resultant clutch mass increased with age. One-year-old terrestrial morphs produced more ova than 1-year-old paedomorphs but paedomorphs have the potential to reproduce earlier than terrestrial morphs. Parental investment, as shown by the relationship between clutch size and egg size, increased with age. This suggested that as potential energy increased with age, A. talpoideum produced more eggs and larger eggs. Rather than optimizing egg size, individuals may produce a range of egg sizes that theoretically fare better in spatially and temporally varying environments.  相似文献   
2.
Numbers of successfully metamorphosing juvenile amphibians were tabulated at three wetlands in South Carolina, U.S.A. using terrestrial drift fences with pitfall traps. A relatively undisturbed Carolina bay was studied for eight years, a partially drained Carolina bay for four years, and a man-made borrow pit for three years. Annual production of juveniles at the undisturbed Carolina bay ranged from zero to 75,644 individuals of 15 species. Fewer individuals of fewer species typically metamorphosed at the borrow pit than at the undisturbed bay, with the least numbers at the partially drained Carolina bay. Both total number and species diversity of metamorphosing juveniles at each site each year showed a strong positive correlation with hydroperiod, i.e., the number of days a site contained standing water that year. Data for one common anuran species and the most common salamander species were analyzed separately by multiple regression, in addition to the community analyses. For the mole salamander, Ambystoma talpoideum, hydroperiod was a significant predictor of the number of metamorphosing juveniles, but the number of breeding females was not. For the ornate chorus frog, Pseudacris ornata, the number of breeding females was a significant predictor of the number of metamorphosing juveniles, but hydroperiod was not. Variation in the dates of wetland filling and drying interacts with other factors to determine amphibian community structure and diversity. Either increasing or decreasing the number of days a wetland holds water could increase or decrease the number and species diversity of amphibians in and around a wetland.  相似文献   
3.
A “common garden” experiment using artifical ponds was performed to test if differences in frequency of paedomorphosis and metamorphosis among six natural populations of the salamander Ambystoma talpoideum resulted from the drying regime of the aquatic habitat acting as an agent of selection. Our experiment supports the hypothesis of genetic differentiation in the propensity to metamorphose among the populations, but gave mixed evidence that pond-drying regime is the selective force directing evolution of this trait. Some populations appear to have evolved phenotypic plasticity whereas others may have a genetic polymorphism in their propensity to metamorphose as ponds dry.  相似文献   
4.
Johnson JR  Semlitsch RD 《Oecologia》2003,137(2):205-210
Concern over amphibian population declines and loss of terrestrial and aquatic habitat have emphasized the need to define habitat requirements for each stage in a species' life history. The realization that pond-breeding amphibians spend most of their lives in the terrestrial environment suggests the need to protect terrestrial as well as aquatic habitat. Many studies on amphibian populations have focused on emigration from breeding sites to define habitat use; however these studies do not typically elucidate terrestrial activities of adults within the breeding season. We measured colonization rates of artificial pools by gray treefrogs (Hyla versicolor) at multiple distances from natural breeding ponds. We found a non-random distribution of egg deposition among distances, with 95% of eggs deposited within 15 m of the breeding pond. Additionally, we found that the time to first colonization of artificial pools increased with respect to distance. Our results indicate that adult gray treefrogs may travel up to 200 m within a breeding season, and that multiple breeding ponds may be considered part of a single population. We suggest that a minimum core terrestrial habitat of 60 m surrounding breeding sites is appropriate for protection of local populations of gray treefrogs.  相似文献   
5.
6.
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.  相似文献   
7.
Understanding the mechanisms limiting the distributions of organisms is necessary for predicting changes in community composition along habitat gradients. In many areas of the USA, land originally cleared for agriculture has been undergoing a process of reforestation, creating a gradient of canopy cover. For small temporary wetlands, this gradient can alter abiotic conditions and influence the resource base of wetland food webs by affecting litter inputs. As distributions of amphibians and many other temporary wetland taxa correlate with canopy cover, we experimentally manipulated shade levels and litter types in pond mesocosms to explore mechanisms limiting species performance in wetlands with canopy cover. Most differences between ponds were mediated by litter type rather than direct effects of shading. Although all three amphibian species tested are open-canopy specialists, spring peepers were the only species to show decreased survival in shaded ponds. Pond litter type generally had strong effects on growth and development rates, with tadpoles of two species in grass litter ponds growing to twice the size of, and metamorphosing 7 days earlier than, those in leaf litter ponds. Contrary to our initial hypothesis, shade level and litter type showed very few significant interactions. Our results indicate that the effects of shading cannot be considered in isolation of vegetation changes in pond basins when evaluating the effects of forest succession on temporary pond communities.  相似文献   
8.
9.
10.
Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic–terrestrial linkages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号