首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   7篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   8篇
  2009年   9篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.

Mixotrophy (MX, also called partial mycoheterotrophy) in plants is characterized by isotopic abundances that differ from those of autotrophs. Previous studies have evaluated mycoheterotrophy in MX plants associated with fungi of similar ecological characteristics, but little is known about the differences in the relative abundances of 13C and 15N in an orchid species that associates with several different mycobionts species. Since the chlorophyllous orchid Cremastra variabilis Nakai associates with various fungi with different ecologies, we hypothesized that it may change its relative abundances of 13C and 15N depending on the associated mycobionts. We investigated mycobiont diversity in the chlorophyllous orchid C. variabilis together with the relative abundance of 13C and 15N and morphological underground differentiation (presence or absence of a mycorhizome with fungal colonization). Rhizoctonias (Tulasnellaceae, Ceratobasidiaceae, Sebacinales) were detected as the main mycobionts. High differences in δ13C values (– 34.7? to?– 27.4 ‰) among individuals were found, in which the individuals associated with specific Psathyrellaceae showed significantly high relative abundance of 13C. In addition, Psathyrellaceae fungi were always detected on individuals with mycorhizomes. In the present study, MX orchid association with non-rhizoctonia saprobic fungi was confirmed, and the influence of mycobionts on morphological development and on relative abundance of 13C and 15N was discovered. Cremastra variabilis may increase opportunities to gain nutrients from diverse partners, in a bet-hedging plasticity that allows colonization of various environmental conditions.

  相似文献   
2.
3.

Background and Aims

Nutritional changes associated with the evolution of achlorophyllous, mycoheterotrophic plants have not previously been inferred with robust phylogenetic hypotheses. Variations in heterotrophy in accordance with the evolution of leaflessness were examined using a chlorophyllous–achlorophyllous species pair in Cymbidium (Orchidaceae), within a well studied phylogenetic background.

Methods

To estimate the level of mycoheterotrophy in chlorophyllous and achlorophyllous Cymbidium, natural 13C and 15N contents (a proxy for the level of heterotrophy) were measured in four Cymbidium species and co-existing autotrophic and mycoheterotrophic plants and ectomycorrhizal fungi from two Japanese sites.

Key Results

δ13C and δ15N values of the achlorophyllous C. macrorhizon and C. aberrans indicated that they are full mycoheterotrophs. δ13C and δ15N values of the chlorophyllous C. lancifolium and C. goeringii were intermediate between those of reference autotrophic and mycoheterotrophic plants; thus, they probably gain 30–50 % of their carbon resources from fungi. These data suggest that some chlorophyllous Cymbidium exhibit partial mycoheterotrophy (= mixotrophy).

Conclusions

It is demonstrated for the first time that mycoheterotrophy evolved after the establishment of mixotrophy rather than through direct shifts from autotrophy to mycoheterotrophy. This may be one of the principal patterns in the evolution of mycoheterotrophy. The results also suggest that the establishment of symbiosis with ectomycorrhizal fungi in the lineage leading to mixotrophic Cymbidium served as pre-adaptation to the evolution of the mycoheterotrophic species. Similar processes of nutritional innovations probably occurred in several independent orchid groups, allowing niche expansion and radiation in Orchidaceae, probably the largest plant family.  相似文献   
4.
5.
Some green orchids obtain carbon (C) from their mycorrhizal fungi and photosynthesis. This mixotrophy may represent an evolutionary step towards mycoheterotrophic plants fully feeding on fungal C. Here, we report on nonphotosynthetic individuals (albinos) of the green Cephalanthera damasonium that likely represent another evolutionary step. Albino and green individuals from a French population were compared for morphology and fertility, photosynthetic abilities, fungal partners (using microscopy and molecular tools), and nutrient sources (as characterized by 15N and 13C abundances). Albinos did not differ significantly from green individuals in morphology and fertility, but tended to be smaller. They harboured similar fungi, with Thelephoraceae and Cortinariaceae as mycorrhizal partners and few rhizoctonias. Albinos were nonphotosynthetic, fully mycoheterotrophic. Green individuals carried out photosynthesis at compensation point and received almost 50% of their C from fungi. Orchid fungi also colonized surrounding tree roots, likely to be the ultimate C source. Transition to mycoheterotrophy may require several simultaneous adaptations; albinos, by lacking some of them, may have reduced ecological success. This may limit the appearance of cheaters in mycorrhizal networks.  相似文献   
6.
7.
Survival of the ectomycorrhizal fungal strain Suillus collinitus Sc-32 on Pinus halepensis after inoculation and outplanting was monitored in a Mediterranean plantation. Three molecular fingerprints were developed: RFLP of the internal transcribed spacer ribosomal DNA, intersimple sequence repeat, and a specific sequence-characterized amplified region marker. The inoculant was demonstrated to survive on inoculated seedlings 4 years after outplanting (56 months after inoculation), although S. collinitus was not fruiting. The designed markers set allows reliable and inexpensive monitoring of inoculated seedlings and suggests that S. collinitus is suitable for inoculation of Mediterranean Pinus. These data are discussed in the framework of suilloid population ecology.  相似文献   
8.
Symbiosis, the intimate association between two or more organisms, is a fundamental component of biological systems. Our ability to understand the processes involved in the establishment and function of Symbiosis has critical consequences for the health of humans and the world we live in. For example, a deeper understanding of how legumes and insects have harnessed the nitrogen-fixing capacity of microbes can pave the way toward novel strategies to decrease fertilizer use. Also, using insect models to elucidate links between diet, gut microbiota, and toxin sensitivity not only has implications for biological control strategies, but also will lend insights into similar links in the human gut ecosystem. These types of ideas were presented and discussed at the 6th International Symbiosis Society Congress held in Madison, Wisconsin August, 2009. Over 300 participants from 20 countries attended the 7-day event, which featured cutting-edge symbiosis research from many different perspectives and disciplines. The conference was organized thematically, with oral sessions focused on Evolution, Ecology, Metabolism, the Host-Microbe Interface, Threats to Earth Systems, Symbiosis Models and the Human Microbiome, Viruses and Organelles, and Symbiosis Education. World-renowned scientists, post-doctoral fellows, and students were given the opportunity to describe their most recent discoveries. Session chairs provided overviews of their programs which highlight how the comparative analysis of different systems reveal common trends underlying symbiotic associations, what tools and theory are being developed that may be applied more broadly in symbiosis research, how symbiosis research contributing solutions to global issues such as emerging antibiotic resistance, a need for alternative energy sources, the pursuit of sustainable agriculture and natural resources, and how symbiotic systems are ideal for educating people about the fascinating natural world around us. The following paragraphs provide an overview of the research and discussions that took place during the congress.  相似文献   
9.
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life‐history costs of sprouting, and of dormancy. Short‐lived and mycoheterotrophic species have higher proportions of dormant plants than long‐lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.  相似文献   
10.
Human activities have affected the surrounding natural ecosystems, including belowground microorganisms, for millennia. Their short- and medium-term effects on the diversity and the composition of soil microbial communities are well-documented, but their lasting effects remain unknown. When unoccupied for centuries, archaeological sites are appropriate for studying the long-term effects of past human occupancy on natural ecosystems, including the soil compartment. In this work, the soil chemical and bacterial compositions were compared between the Roman fort of Hegra (Saudi Arabia) abandoned for 1500 years, and a preserved area located at 120 m of the southern wall of the Roman fort where no human occupancy was detected. We show that the four centuries of human occupancy have deeply and lastingly modified both the soil chemical and bacterial compositions inside the Roman fort. We also highlight different bacterial putative functions between the two areas, notably associated with human occupancy. Finally, this work shows that the use of soils from archaeological sites causes little disruption and can bring relevant information, at a large scale, during the initial surveys of archaeological sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号