首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   12篇
  2014年   10篇
  2013年   12篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有138条查询结果,搜索用时 33 毫秒
1.
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.  相似文献   
2.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   
3.
Suppressor of IKKepsilon (SIKE) is a 207 residue protein that is implicated in the TLR3‐TANK‐binding kinase‐1‐mediated response to viral infection. SIKE's function in this pathway is unknown, but SIKE forms interactions with two distinct cytoskeletal proteins, α‐actinin and tubulin, and SIKE knockout reduces cell migration. As structure informs function and in the absence of solved structural homologs, our studies were directed toward creating a structural model of SIKE through biochemical and biophysical characterization to probe and interrogate SIKE function. Circular dichroism revealed a primarily (73%) helical structure of minimal stability (<Tm > =32°C) but reversibly denatured. Limited proteolysis (LP) and chemical modification identified the N‐terminal 2/3 of the protein as dynamic and accessible, whereas size exclusion chromatography (SEC) confirmed three homo‐oligomeric species. SEC coupled to chemical crosslinking characterized the primary species as dimeric, a secondary hexameric species, and a higher order aggregate/polymer. Fluorescence polarization using intrinsic tryptophan fluorescence contextualized the anisotropy value for the SIKE dimer (molecular weight 51.8 kDa) among proteins of known structure, bovine serum albumin (BSA; 66 kDa), and glutamate dehydrogenase (GDH; 332 kDa). Radii of gyration for BSA and GDH provided exclusionary values for SIKE tertiary and dimeric quaternary models that otherwise conformed to secondary structure, LP, and modification data. Dimeric quaternary models were further culled using acrylamide quenching data of SIKE's single tryptophan that showed a single, protected environment. The low cooperativity of folding and regions of dynamic and potentially disordered structure advance the hypothesis that SIKE forms a conformational ensemble of native states that accommodate SIKE's interactions with multiple, distinct protein‐binding partners.  相似文献   
4.
The presence of nutrients in the small intestine slows gastric emptying and suppresses appetite and food intake; these effects are partly mediated by the release of gut hormones, including CCK. We investigated the hypothesis that the modulation of antropyloroduodenal motility, suppression of appetite, and stimulation of CCK and glucagon-like peptide-1 secretion by intraduodenal fat are dependent on triglyceride hydrolysis by lipase. Sixteen healthy, young, lean men were studied twice in double-blind, randomized, crossover fashion. Ratings for appetite-related sensations, antropyloroduodenal motility, and plasma CCK and glucagon-like peptide-1 concentrations were measured during a 120-min duodenal infusion of a triglyceride emulsion (2.8 kcal/min) on one day with, on the other day without, 120 mg tetrahydrolipstatin, a potent lipase inhibitor. Immediately after the duodenal fat infusion, food intake at a buffet lunch was quantified. Lipase inhibition with tetrahydrolipstatin was associated with reductions in tonic and phasic pyloric pressures, increased numbers of isolated antral and duodenal pressure waves, and stimulation of antropyloroduodenal pressure-wave sequences (all P < 0.05). Scores for prospective consumption and food intake at lunch were greater, and nausea scores were slightly less, and the rises in plasma CCK and glucagon-like peptide-1 were abolished (all P < 0.05). In conclusion, lipase inhibition attenuates the effects of duodenal fat on antropyloroduodenal motility, appetite, and CCK and glucagon-like peptide-1 secretion.  相似文献   
5.
ABSTRACT.   Saltmarsh Sharp-tailed Sparrows ( Ammodramus caudacutus ) build ground nests, often with a closely-woven dome, in marshes that frequently flood during high tides. To test the hypothesis that domed nests help reduce the loss of eggs and chicks due to flooding or predation, we examined the characteristics and fate of 102 nests at sites along the coast of Connecticut. To test whether nest structure was tailored to suit microhabitat conditions, we also measured vegetation characteristics around nests. Finally, we conducted artificial nest-flooding experiments to determine whether removal of domes reduced egg retention during flooding. We found no significant effects of nest structure on breeding success or failure, and few significant correlations between nest structure and microhabitat. The height of nests above the ground, however, increased with vegetation height, supporting the hypothesis that nest construction is influenced by flooding, but not supporting the hypothesis that predation risk is important. Dome removal experiments showed that domes have a highly significant effect on the retention of eggs during flooding, suggesting that domes help eggs survive the regular tidal flooding of marshes.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号