首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
  2022年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   2篇
  1994年   1篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1878年   1篇
  1877年   2篇
排序方式: 共有51条查询结果,搜索用时 218 毫秒
1.
cDNAs were cloned, sequenced and expressed which encode two different cytochrome P-450 forms of the alkane-assimilating yeast Candida maltosa, designated as P-450Cm1 and P-450Cm2. The amino acid sequences deduced were about 55% identical. Expression in Saccharomyces cerevisiae resulted in the formation of intact microsomal P-450 systems catalyzing the hydroxylation of n-hexadecane and lauric acid with significantly different substrate preferences. A massive proliferation of the endoplasmic reticulum was observed in the S. cerevisiae cells which produced P-450. Depending on the P-450 form expressed, distinctly organized stacks of paired membranes appeared and occupied considerable areas of the cytoplasm. As shown by immunoelectron microscopy for P-450Cm1, the protein expressed was highly concentrated within these newly formed membrane structures.  相似文献   
2.
The immunological relations of the cytochrome P-450 from the n-alkane utilizing yeast Candida maltosa to cytochrome P-450 forms of other organisms - yeasts, bacteria and mammalia - were investigated using a solid-phase double-antibody radioimmunoassay. Only the microsomal fraction of other n-alkane utilizing yeasts shows a distinct cross-reaction with an antiserum against cytochrome P-450 from Candida maltosa. Neither the tested bacterial nor the mammalian cytochromes P-450 cross-react with the antiserum.  相似文献   
3.

Aim

20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI).

Methods

Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry.

Results

Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice.

Conclusion

These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation of 20-HETE formation in sEH-KO-mice.  相似文献   
4.
acta ethologica - The Brazilian ruby, Heliodoxa rubricauda, is a forest species of hummingbird endemic to the Atlantic Forest. It belongs to an Andean clade of birds with robust and strong legs and...  相似文献   
5.
Fish oil omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against arrhythmia and sudden cardiac death by largely unknown mechanisms. Recent in vitro and in vivo studies demonstrate that arachidonic acid (AA) metabolizing cytochrome P450-(CYP) enzymes accept EPA and DHA as efficient alternative substrates. Dietary EPA/DHA supplementation causes a profound shift of the cardiac CYP-eicosanoid profile from AA- to EPA- and DHA-derived epoxy- and hydroxy-metabolites. CYP2J2 and other CYP epoxygenases preferentially epoxidize the ω-3 double bond of EPA and DHA. The corresponding metabolites, 17,18-epoxy-EPA and 19,20-epoxy-DHA, dominate the CYP-eicosanoid profile of the rat heart after EPA/DHA supplementation. The (ω-3)-epoxyeicosanoids show highly potent antiarrhythmic properties in neonatal cardiomyocytes, suggesting that these metabolites may specifically contribute to the cardioprotective effects of omega-3 fatty acids. This hypothesis is discussed in the context of recent findings that revealed CYP-eicosanoid mediated mechanisms in cardiac ischemia-reperfusion injury and maladaptive cardiac hypertrophy.  相似文献   
6.
Mass spectrometry techniques have enabled the identification of different lipid metabolites and mediators derived from omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA) that are implicated in various biological processes. However, the broad-spectrum assessment of physiologically formed lipid metabolites and mediators in blood samples has not been presented so far. Here lipid mediators and metabolites of the n-6 PUFA arachidonic acid as well as the long-chain n-3 PUFA eicosapentaenoic acids (EPA) and docosahexaenoic acid (DHA) were measured in human blood samples as well as in mouse blood. There were detectable but mostly very low amounts of the assayed compounds in human native plasma samples, whereas in vitro activation of whole blood with the calcium ionophore A23187 led to highly significant increases of metabolite formation, with a predominance of the 12-lipoxygenase (12-LOX) products 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHA). A23187 activation also led to significant increases in the formation of 5-LOX products including leukotriene B(4) (LTB(4)), leukotriene B(5) (LTB(5)) as well as of 15-LOX products and prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)). Levels were similar or even higher in A23187-activated mouse blood. The approach presented here thus provides a protocol for the comprehensive and concomitant assessment of the generation capacity of n-3 and n-6 PUFA-derived lipid metabolites as well as thromboxanes and prostaglandins in human and murine blood samples. Further studies will now have to evaluate lipid metabolite generation capacity in different physiological and pathophysiological contexts.  相似文献   
7.
To answer the question whether the most common allelic variants of human CYP1A1, namely CYP1A1.1 (wild type), CYP1A1.2 (Ile462Val), and CYP1A1.4 (Thr461Asn), differ in their catalytic activity towards eicosapentaenoic acid (EPA), in vitro enzymatic assays were performed in reconstituted CYP1A1 systems. All CYP1A1 variants catalyzed EPA epoxygenation and hydroxylation to 17(R),18(S)-epoxyeicosatetraenoic acid (17(R),18(S)-EETeTr) and 19-OH-EPA, yet with varying catalytic efficiency and distinct regiospecificity. CYP1A1.1 and CYP1A1.4 formed 17(R),18(S)-EETeTr as main product (K(m)=53 and 50 microM; V(max)=0.60 and 0.50 pmol/min/pmol; V(max)/K(m)=0.11 and 0.10 microM(-1)min(-1), respectively), followed by 19-OH-EPA (K(m)=76 and 93 microM; V(max)=0.37 and 0.37 pmol/min/pmol; V(max)/K(m)=0.005 and 0.004 microM(-1)min(-1), respectively). The variant CYP1A1.2 produced almost equal amounts of both metabolites, but its catalytic efficiency for hydroxylation was five times higher (K(m)=66 microM; V(max)=1.7 pmol/min/pmol; V(max)/K(m)=0.026 microM(-1)min(-1)) and that for epoxygenation was twice higher (K(m)=66 microM; V(max)=1.5 pmol/min/pmol; V(max)/K(m)=0.023 microM(-1)min(-1)) than those of the wild-type enzyme. Thus, the Ile462Val polymorphism in human CYP1A1 affects EPA metabolism and may contribute to interindividual variance in the local production of physiologically active fatty acid metabolites in the cardiovascular system and other extrahepatic tissues, where CYP1A1 is expressed or induced by polycyclic aromatic hydrocarbons and other xenobiotics.  相似文献   
8.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   
9.
Exposure of Ehrlich ascites tumor (EAT) cells to the anticancer drug cisplatin results in an elevated abundance of three isoforms of the small heat shock protein hsp25 without inducing the general stress response as commonly observed after heat shock. The most effective cisplatin concentration (2.5 microM) is also most efficient in arresting cells in S phase suggesting a relationship between hsp25 expression and cell cycle events. Exposure to cisplatin results also in an increased thermotolerance of EAT cells.  相似文献   
10.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号