首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   74篇
  国内免费   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   25篇
  2014年   14篇
  2013年   24篇
  2012年   38篇
  2011年   31篇
  2010年   10篇
  2009年   25篇
  2008年   25篇
  2007年   21篇
  2006年   27篇
  2005年   20篇
  2004年   25篇
  2003年   23篇
  2002年   11篇
  2001年   16篇
  2000年   16篇
  1999年   15篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   14篇
  1991年   12篇
  1990年   5篇
  1989年   12篇
  1988年   11篇
  1987年   11篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   10篇
  1982年   11篇
  1981年   11篇
  1979年   9篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有636条查询结果,搜索用时 359 毫秒
1.
2.
3.
M Hartmann  M Kelm  J Schrader 《Life sciences》1991,48(17):1619-1626
In cultured coronary endothelial cells obtained from guinea pig hearts, bradykinin (10(-6) M) stimulated the 32Pi-incorporation into 5 substrate proteins with molecular weights corresponding to 27, 32, 60, 86 and 100 kDa. The time course of phosphorylation of the 60, 86 and 100 kDa proteins was rapid (within 30 s), but transient (max. within 1-2 min.), while the 32Pi incorporation into the 27 and 32 kDa protein was delayed but increased within 10 minutes. Ca+(+)-ionophore A 23187 (10(-5) M) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-5) M) both mimicked the effects of the bradykinin induced phosphorylation pattern. While A 23187 enhanced the phosphorylation of the 27, 60 and 100 kDa substrates, TPA increased the 32Pi-incorporation into the 32 and 86 kDa proteins. Furthermore the time course of protein phosphorylation elicited by A 23187 and TPA showed marked similarities to those obtained with bradykinin. Our findings are consistent with the view, that stimulation of coronary endothelial bradykinin-receptors activates both Ca+(+)-dependent protein kinases and protein kinase C.  相似文献   
4.
The levels of class II major histocompatibility complex (MHC) antigens (la antigens) on cells of a cultured B lymphoma line (WEHI-279) were significantly increased after 24 hr incubation with medium conditioned by concanavalin A-stimulated mouse or rat spleen cells, or by an azobenzenearsonate- (ABA) specific T cell clone that had been stimulated with ABA-coupled spleen cells or concanavalin A. The levels and properties of the la-inducing activity correlated with those of interferon-gamma (IFN-gamma) measured by inhibition of virus plaque formation. Both the la-inducing activity and the IFN-gamma from the T cell clone had an apparent m.w. of 40,000 determined by gel filtration, were sensitive to treatment with trypsin or exposure to pH 2, but were stable to heat (56 degrees C, 1 hr). The induction of la antigens on WEHI-279 cells was dose-dependent, and the maximum response occurred at a concentration corresponding to 1 to 2 U/ml of antiviral activity. This T cell-derived IFN-gamma-like molecule also increased the expression of cell surface la antigens on another B cell line (WEHI-231), and cell lines of macrophage (J774) and myeloid (WEHI-3B and WEHI-265) origin. Furthermore, in all cases the levels of class I MHC (H-2K or H-2D) antigens were also increased. Similar patterns of induction of Ia and H-2 antigens were obtained with supernatants containing IFN-gamma produced by a monkey cell line (COS) that had been transfected with a plasmid bearing the cloned murine IFN-gamma gene. This activity was sensitive to pH 2 and was not present in the supernatant from COS cells that were not transfected with the murine IFN-gamma gene. These results established that IFN-gamma is the T cell-derived molecule that induces the enhanced expression of Ia and H-2 antigens on B cells and macrophages. A major physiologic role of IFN-gamma may be to regulate immune function through the enhanced expression of MHC antigens.  相似文献   
5.
Previous analyses have indicated that steroid hormone receptors undergo an allosteric change in structure upon binding by the steroid ligand. This structural change was envisioned as an intramolecular unmasking of the protein's DNA-binding domain, thus allowing the receptor to function in gene regulation. We report an analysis of the effect of hormone on the DNA-binding activity of the chicken progesterone receptor. Using an isocratic elution of DNA affinity columns we show that unliganded receptor (aporeceptor) can bind a 23-basepair progesterone response element with high affinity and a high degree of sequence preference. Hormone causes a 1.5-fold increase in affinity for the PRE sequence and a 2-fold decrease in affinity for non-specific DNA. Kinetic analysis of the off-rate of receptor-DNA complexes is consistent with this minor effect of hormone. In addition, gel retardation analysis of receptor-progesterone response element complexes further substantiates that hormone is not required for sequence-specific DNA binding. These results indicate that hormone is not necessary for the progesterone receptor to fold into a conformation that recognizes specific gene regulatory sequences.  相似文献   
6.
7.
Leaf thionins of barley have been identified as a novel class of cell wall proteins, toxic to plant pathogenic fungi, and possibly involved in the defense mechanism of plants (Bohlmann, H., Clausen, S., Behnke, S., Giese, H., Hiller, C., Reimann-Philipp, U., Schrader, G., Barkholt, V., and Apel, K., (1988) EMBO J. 7, 1559-1565). In the present work a second subfraction of thionins has been detected within the leaf cell, mainly in the vacuole. Thionins of both groups are closely related to each other. They are toxic to phytopathogenic fungi as well as to plant protoplasts, they share similar amino acid sequences, and their synthesis in etiolated seedlings of barley is down-regulated by light. Despite these similarities each of the two subfractions of thionins could be clearly distinguished by its subcellular distribution. In ultrathin sections of embedded etiolated leaf material, cell wall thionins could be immunogold labeled specifically by an antiserum raised against a fusion protein of Escherichia coli beta-galactosidase and the 15,000 Mr precursor polypeptide of thionins. This antiserum did not react with intracellular thionins. Inversely, intracellular thionins were recognized specifically by an anti-serum raised against soluble leaf thionins. The possible function of intracellular thionins as part of a defense mechanism has been discussed.  相似文献   
8.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
9.
Cells from reproductive soybean (Glycine max [L.] Merr.) plants were isolated using a mechanical-enzymic technique that produced a high yield of uniform, physiologically active cells. Cells were incubated in a pH 6.0 buffered solution and subjected to various treatments in order to determine the nature of net amino acid efflux. Total net amino acid (ninhydrinreactive substances) efflux was not affected by the following conditions: (a) darkness, (b) aeration, (c) K+ concentrations of 0.1, 1.0, 10, or 100 millimolar and (d) pH 4, 5, 6, 7, or 8. The Q10 for net amino acid efflux between 10°C and 30°C was 1.6. Thus, it seems that net amino acid efflux requires neither current photosynthetic energy nor a pH/ion concentration gradient. Amino acid analyses of the intra-and extracellular fractions over time showed that each amino acid was exported linearly for at least 210 minutes, but that export rate was not necessarily related to internal amino acid pools. Amino acids that were exported fastest were alanine, lysine, leucine, and glycine. Addition of the inhibitor p-chloromercuriphenyl sulfonic acid, 3(3,4-dichlorophenyl)-1,1-dimethylurea, or carbonylcyanide p-trifluoromethoxyphenylhydrazone increased the rate of total amino acid efflux but had specific effects on the efflux of certain amino acids. For example, p-chloromercuriphenyl sulfonic acid greatly enhanced efflux of γ-aminobutyric acid, which is not normally exported rapidly even though a high concentration normally exists within cells. The data suggest that net amino acid efflux is a selective diffusional process. Because net efflux is the result of simultaneous efflux and influx, we propose that efflux is a facilitated diffusion process whereas influx involves energy-dependent carrier proteins.  相似文献   
10.
Koch KE  Schrader LE 《Plant physiology》1984,75(4):1040-1043
Partitioning and translocation of 14C-photosynthates were examined during flowering and seed maturation in soybean (Glycine max [L.]Merr.) plants to quantify allocation to sugars, amino acids, organic acids, and starch and to study transport of C and N from leaves to reproductive sinks. The trifoliolate leaf at the eighth node was exposed to steady state levels of 14CO2 for 2 hours, followed by immediate extraction and identification of radioactive assimilates in the fed leaf blade, tissues of the transport path (e.g. petiole and stem), and fruits if they were present. About one-third of the total 14C recovered from the leaf blades was in starch until late pod-filling, after which the proportion dropped to 16%. Sugars comprised 70% to 86% of the recovered 14C from soluble assimilates of the source leaf, with highest proportions occurring during late flowering and early pod-filling. Amino acids accounted for 8% to 17% of the 14C recovered from the soluble fraction, and were most evident during early flowering and mid to late pod-filling. The 14C-organic acids comprised from 3% to 14% of the soluble 14C-assimilates in leaves. Petioles consistently contained a higher percentage of recovered radioactivity in sugars (87-97%) and a lower percentage in amino acids (3-12%) than did leaf blades. 14C-Amino acids in petioles attained their highest levels during mid and late pod-filling, while 14C-organic acids comprised 2% or less of the recovered radioactivity after pod initiation. The distribution of 14C-assimilates in the internode below the source leaf was similar to that found in petioles. A comparison of the above data to calculated C and N requirements for seed development suggests that 14C-amino acids derived from current photosynthesis and translocated from source leaves supply at least 12% to 48% of the seed N depending on the stage of pod-filling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号