首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   5篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
1. Transmembrane pH gradients (acidic inside) and electrical gradients (negative inside) were estimated in cortical synaptosomes from the distribution of the weak base methylamine and the lipophilic cation tetraphenylphosphonium, respectively. 2. Acidic interior pH gradients were produced by outwardly directed K+ gradients in Na+-free media. External K+ accelerated the dissipation of preformed H+ gradients. The appearance of H+ in the medium was directly demonstrated by pH-stat titration of a weakly buffered medium. Amiloride failed to inhibit K+-induced H+ release. 3. Elevating K+ in the absence of Na+ did not affect the endogenous contents of noradrenaline, dopamine, and serotonin, as determined by high-performance liquid chromatography with electrochemical detection. 4. H+ diffusion potentials were generated when outwardly directed H+ gradients were imposed onto the plasma membrane indicating an electrogenic H+ efflux which is not coupled to other ions. 5. At low K+ in the Na+-free sucrose medium, the plasma membrane potential Em (derived from distribution of tetraphenylphosphorium cation) did not approach a value for EK, the K+ equilibrium potential (calculated from K+ gradients). The deviation of Em from EK could be quantitatively described by a modified constant-field equation, taking a relative H+/K+ permeability coefficient of 12,400 into consideration. 6. It is concluded that synaptosomes have a H+ conductance pathway in their plasma membrane in addition to the Na+/H+ antiporter. H+ influx is driven by and leads to a reduction of Em. K+/H+ exchange resulted from the electrical coupling of K+ and H+ fluxes via parallel K+ and H+ channels. Since the Na+/H+ antiporter counteracts passive equilibration of H+ under physiological conditions, a continuous cycling of H+ across the plasma membrane will take place. A possible physiological role of the H+ leak in pHi regulation is discussed.  相似文献   
2.
Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of -74mV and -47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.  相似文献   
3.
4.
Microchip electrophoresis: a method for high-speed SNP detection   总被引:3,自引:1,他引:2  
As a trial practical application, we have applied optimized microfabricated electrophoresis devices, combined with enzymatic mutation detection methods, to the determination of single nucleotide polymorphism (SNP) sites in the p53 suppressor gene. Using clinical samples, we have achieved robust assays with quality factors as good as conventional electrophoresis in ~100 s. This is 10 and 50 times faster than capillary and slab gel electrophoresis, respectively. The method was highly accurate with an average error of mutation site measurement of only ±5 bp. No clean-up of the digestion mixtures was needed prior to injection. This greatly simplifies sample handling relative to capillary instruments, which is important for high-throughput screening applications. Following identification, absolute mutation determination of the screened samples was achieved in a second microdevice optimized for four-color DNA sequencing. Total run time was 25 min in this second device and sequencing data were in full agreement with ABI Prism® 377 sequencing runs which required 3.5 h. The tandem application of microdevices for location then full characterization of SNPs appears to confirm many of the improvements claimed for future application of microdevices in practical scaled screening for mutational analysis.  相似文献   
5.
P2X(1) receptor subunits assemble in the ER of Xenopus oocytes to homotrimers that appear as ATP-gated cation channels at the cell surface. Here we address the extent to which N-glycosylation contributes to assembly, surface appearance, and ligand recognition of P2X(1) receptors. SDS-polyacrylamide gel electrophoresis (PAGE) analysis of glycan minus mutants carrying Gln instead of Asn at five individual NXT/S sequons reveals that Asn(284) remains unused because of a proline in the +4 position. The four other sites (Asn(153), Asn(184), Asn(210), and Asn(300)) carry N-glycans, but solely Asn(300) located only eight residues upstream of the predicted reentry loop of P2X(1) acquires complex-type carbohydrates. Like parent P2X(1), glycan minus mutants migrate as homotrimers when resolved by blue native PAGE. Recording of ATP-gated currents reveals that elimination of Asn(153) or Asn(210) diminishes or increases functional expression levels, respectively. In addition, elimination of Asn(210) causes a 3-fold reduction of the potency for ATP. If three or all four N-glycosylation sites are simultaneously eliminated, formation of P2X(1) receptors is severely impaired or abolished, respectively. We conclude that at least one N-glycan per subunit of either position is absolutely required for the formation of P2X(1) receptors and that individual N-glycans possess marked positional effects on expression levels (Asn(154), Asn(210)) and ATP potency (Asn(210)).  相似文献   
6.
Human P2X7 receptors (hP2X7Rs) belong to the P2X family, which opens an intrinsic cation channel when challenged by extracellular ATP. hP2X7Rs are expressed in cells of the inflammatory and immune system. During inflammation, ATP and protons are secreted into the interstitial fluid. Therefore, we investigated the effect of protons on the activation of hP2X7Rs. hP2X7Rs were expressed in Xenopus laevis oocytes and activated by the agonists ATP or benzoyl-benzoyl-ATP (BzATP) at different pH values. The protons reduced the hP2X7R-dependent cation current amplitude and slowed the current deactivation depending on the type and concentration of the agonist used. These effects can be explained by (i) the protonation of ATP, which reduces the effective concentration of the agonist ATP4− at the high- and low-affinity ATP activation site of the hP2XR, and (ii) direct allosteric inhibition of the hP2X7R channel opening that follows ATP4− binding to the low-affinity activation site. Due to the hampered activation via the low-affinity activation site, a low pH (as observed in inflamed tissues) leads to a relative increase in the contribution of the high-affinity activation site for hP2X7R channel opening.  相似文献   
7.
The SLC26 gene family encodes multifunctional transport proteins in numerous tissues and organs. Some paralogs function as anion exchangers, others as anion channels, and one, prestin (SLC26A5), represents a membrane-bound motor protein in outer hair cells of the inner ear. At present, little is known about the molecular basis of this functional diversity. We studied the subunit stoichiometry of one bacterial, one teleost, and two mammalian SLC26 isoforms expressed in Xenopus laevis oocytes or in mammalian cells using blue native PAGE and chemical cross-linking. All tested SLC26s are assembled as dimers composed of two identical subunits. Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. Our results indicate that an evolutionarily conserved dimeric quaternary structure represents the native and functional state of SLC26 transporters.  相似文献   
8.
9.
Using the patch-clamp method, we studied the influence of external alkali and organic monovalent cations on the single-channel properties of the adenosine triphosphate (ATP)-activated recombinant human P2X(7) receptor. The slope conductance of the hP2X(7) channel decreased and the reversal potential was shifted to more negative values as the ionic diameter of the organic test cations increased. From the relationship between single-channel conductance and the dimensions of the inward current carrier, the narrowest portion of the pore was estimated to have a mean diameter of approximately 8.5 A. Single-channel kinetics and permeation properties remained unchanged during receptor activation by up to 1 mM ATP(4-) for >1 min, arguing against a molecular correlate of pore dilation at the single P2X(7) channel level. Substitution of extracellular Na(+) by any other alkali or organic cation drastically increased the open probability of the channels by prolonging the mean open time. This effect seems to be mediated allosterically through an extracellular voltage-dependent Na(+) binding site with a K(d) of approximately 5 mM Na(+) at a membrane potential of -120 mV. The modulation of the ATP-induced hP2X(7) receptor gating by extracellular Na(+) could be well described by altering the rate constant from the open to the neighboring closed state in a C-C-C-O kinetic receptor model. We suggest that P2X(7) receptor-induced depolarization and associated K(+)-efflux may reduce Na(+) occupancy of the regulatory Na(+) binding site and thus increase the efficacy of ATP(4-) in a feed-forward manner in P2X(7) receptor-expressing cells.  相似文献   
10.
The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号