首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   7篇
  2015年   1篇
  2013年   2篇
  2011年   3篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   7篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1989年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有65条查询结果,搜索用时 156 毫秒
1.
2.
Abstract: Fungal pellets (diameters ranging from 0.5 to 2 mm) were precultured in sugar-containing industrial sewage. They were packed into chromatography columns and then tested for biosorption of silver, copper and lead, using the downflow method. The physical parameters taken (differential pressure at the column, flow rate, bed height) showed rather good mechanical properties of the pellets. Charging the column with heavy metal solution (1 mM Ag+, Cu2+ or Pb2+ as nitrates in distilled water) resulted in very good biosorptive properties. Eluted solution contained less than or an equal amount of 1 gM heavy metal, demonstrating a removal of more than 99.9% of added metal.  相似文献   
3.
Summary The adaptation of soil microorganisms to different environmental conditions was investigated in the Austrian Central Alps (Hohe. Tauern). The floristic composition of the soil fungi at different sites was determined and the CO2-release from soils taken from different altitudes was measured at different temperatures. The results showed a decreasing diversity of soil fungi with increasing altitude and a change in the dominating species at different altitudes and/or with vegetation patterns. The relative rates of CO2-release from soils from different altitudes did not differ at different incubation temperatures. It was concluded that, among soil fungi the selection of species is a more effective mechanism for the adaption to changed environmental conditions than metabolic adaptations.This study was supported in part by the Österreichische MaB-Hochgebirgsprogramm Hohe TauernDedicated to Dr. K.F. Springer  相似文献   
4.
The evaluation of soil lipase activity as a tool to monitor the decontamination of a freshly oil-polluted soil was tested in a laboratory study. An arable soil was experimentally contaminated with diesel oil at 5 mg hydrocarbons g–1 soil dry weight and incubated with and without fertilization (N-P-K) for 116 days at 20°C. Lipase activity and counts of oil-degrading microorganisms were measured at regular time intervals, and the correlations with the levels of hydrocarbon concentrations in soil were investigated. The residual soil hydrocarbon concentration correlated significantly negatively with soil lipase activity and with the number of oil-degrading microorganisms, independent of fertilization. The induction of soil lipase activity is a valuable indicator of oil biodegradation in naturally attenuated (unfertilized) and bioremediated (fertilized) soils.  相似文献   
5.
Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).  相似文献   
6.
Influence of available aluminium on soil micro-organisms   总被引:1,自引:0,他引:1  
P. ILLMER, K. MARSCHALL AND F. SCHINNER. 1995. Forest soils were selected which covered a wide range of aluminium concentrations (7 to μmol g-1dry matter), but which differed as little as possible from one another in their soil chemical characteristics, including pH. These soils were examined with respect to microbial biomass and respiration, activity of cellulase, N-mineralization, colony-forming units of bacteria and fungi, and the concentrations of several inorganic soil components. The influences of altitude, climate, vegetation and, especially, of soil acidity could be kept to a minimum and so differences between the soil microfloras could clearly be attributed to Al concentration.
Al concentration was recognized to be the main inhibiting factor for the microbial biomass in soil. While N-mineralization was severely inhibited by aluminium, cellulase activity was hardly affected by increasing Al concentrations.
By taking the Al concentration along with various other soil chemical parameters a linear model could be developed that allowed more than 98% of the variability of the microbial biomass in soil to be explained.  相似文献   
7.
Bioremediation of diesel-oil-contaminated alpine soils at low temperatures   总被引:11,自引:0,他引:11  
Bioremediation of two diesel-oil-contaminated alpine subsoils, differing in soil type and bedrock, was investigated in laboratory experiments at 10 °C after supplementation with an inorganic fertilizer. Initial diesel oil contamination of 4000 mg kg−1 soil dry matter (dm) was reduced to 380–400 mg kg−1 dm after 155 days of incubation. In both soils, about 30 % of the diesel oil contamination (1200 mg kg−1 dm) was eliminated by abiotic processes. The residual decontamination (60 %–65 %) could be attributed to microbial degradation activities. In both soils, the addition of a cold-adapted diesel-oil-degrading inoculum enhanced biodegradation rates only slightly and temporarily. From C/N and N/P ratios (determined by measuring the contents of total hydrocarbons, NH4 + N, NO3 N and PO4 3− P) of soils␣it could be deduced that there was no nutrient deficiency during the whole incubation period. Soil biological activities (basal respiration and dehydrogenase activity) corresponded to the course of biodegradation activities in the soils. Received: 9 September 1996 / Accepted: 7 December 1996  相似文献   
8.
The antitumor effects of IFNalpha is mainly mediated by the activation of cytotoxic T lymphocytes (CTLs), the activation of natural killer (NK) cells, and the generation of highly potent antigen-presenting dendritic cells (IFN-DCs). Recently, we demonstrated that these cells partially express the NK cell marker CD56 and reveal a direct cytotoxic immunity towards tumor cells. The aim of the present study was to explore these cells in more detail with respect to their phenotypical and functional characteristics. Flowcytometric analyses revealed that a 5-day incubation time of CD14+ monocytes with IFNalpha results in a steady increase of CD56 surface expression of these cells from 25% (+/-2%) on day 1 up to 68% (+/-11%) on day 5. Interestingly, additional culturing of negatively selected CD56- IFN-DCs also resulted in a partial CD56 surface expression. By comparing both cell types in more detail we found a significant decrease of CD14 expression on CD56+ IFN-DCs (66+/-6%) compared to CD56- IFN-DCs (76+/-6%). On the basis of functional tests, CD56+ IFN-DCs revealed a slightly increased phagocytosis capacity compared to CD56- IFN-DCs as only 82% of CD56- IFN-DCs showed a positive intracytoplasmatic signal after 60 minutes coculturing with FITC-labeled albumin, whereas 91% of CD56+ IFN-DCs were positive. Moreover, CD56+ IFN-DCs revealed a stronger T cell stimulation capacity compared to CD56- IFN-DCs. These results together with our previously described data suggest that CD56+ IFN-DCs and CD56- IFN-DCs may represent one identical cell population with different maturation status rather than two separate cell entities. Because of their high stimulating capacity and their direct cytolytic effects these cells represent a new promising tool for cellular anticancer therapy.  相似文献   
9.
Microbial communities and activities in alpine and subalpine soils   总被引:5,自引:0,他引:5  
Soil samples were collected along two slopes (south and north) at subalpine (1500–1900 m, under closed vegetation, up to the forest line) and alpine altitudes (2300–2530, under scattered vegetation, above the forest line) in the Grossglockner mountain area (Austrian central Alps). Soils were analyzed for a number of properties, including physical and chemical soil properties, microbial activity and microbial communities that were investigated using culture-dependent (viable heterotrophic bacteria) and culture-independent methods (phospholipid fatty acid analysis, FISH). Alpine soils were characterized by significantly ( P <0.01) colder climate conditions, i.e. lower mean annual air and soil temperatures, more frost and ice days and higher precipitation, compared with subalpine soils. Microbial activity (soil dehydrogenase activity) decreased with altitude; however, dehydrogenase activity was better adapted to cold in alpine soils compared with subalpine soils, as shown by the lower apparent optimum temperature for activity (30 vs. 37 °C) and the significantly ( P <0.01–0.001) higher relative activity in the low-temperature range. With increasing altitude, i.e. in alpine soils, a significant ( P <0.05–0.01) increase in the relative amount of culturable psychrophilic heterotrophic bacteria, in the relative amount of the fungal population and in the relative amount of Gram-negative bacteria was found, which indicates shifts in microbial community composition with altitude.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号