首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   14篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
  1959年   1篇
  1956年   1篇
  1955年   1篇
  1938年   2篇
  1934年   1篇
  1929年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
1.
Methods of in vitro mutagenesis were employed to determine the importance of individual nucleotides within the ribosomal RNAs for the structure and function of E. coli ribosomes. A series of defined nucleotides in the genes for the 5 S and 16 S RNA were altered by transition and transversion mutations using either oligonucleotide-directed or bisulfite-catalyzed mutation procedures. Plasmids harbouring the mutated rRNA genes were expressed and the ribosomes containing such altered RNAs were investigated for impairments in RNA-protein interaction assembly and mRNA-coded tRNA binding.  相似文献   
2.
To examine the kinetics of opioid receptor binding, the agonists [D-Ala2-D-Leu5]enkephalin (DADL) and [D-Ala2-MePhe4-Gly-ol5]enkephalin (DAGO) and the antagonists diprenorphine and naltrexone were used with bovine hippocampal synaptic plasma membranes. By computer modeling of equilibrium binding displacement curves utilizing the LIGAND program, we found opioid peptides bind with high affinity to single populations of synaptic plasma membranes receptors, whereas opiate alkaloids bind to multiple sites. Initial kinetic experiments revealed that agonist rates of association were radioligand concentration-independent. Pseudo first-order rate constants for DADL, DAGO, diprenorphine, and naltrexone association were estimated to be 5.63 X 10(5), 5.08 X 10(5), 4.60 X 10(6), and 2.3 X 10(6) mol-1 X s-1, respectively. After preincubation of 0.2-1 nM radioligand for variable time intervals, dissociation was initiated by addition of 1 microM unlabeled ligand. If saturation binding was achieved before dissociation was initiated, then nearly monophasic dissociation of DADL, DAGO, and diprenorphine and a biphasic off-rate for naltrexone were observed. When association times were reduced to pre-equilibrium intervals, the kinetics of dissociation of agonists became biphasic and association time-dependent, but that for antagonists did not change significantly. Comparisons by both graphical methods and computerized nonlinear regression analyses of rate constants revealed that the fraction of the rapid component of agonist dissociation decreases and that of the slow component is elevated with increasing receptor occupancy. In the presence of 100 mM NaCl, DADL dissociation became association time-independent. These data are consistent with the idea that the Na+ effect is brought about by a change of receptor to an antagonist-like conformation. On the basis of both association and dissociation kinetic data, opioid agonists appear to interact in a multistep process in which a rapid, reversible association is followed by the formation of a more tightly bound complex.  相似文献   
3.
For maximal rates of CO2 assimilation in isolated intact spinach chloroplasts the generation of the adequate NADPH/ATP ratio is achieved either by cyclic electron flow around photosystem I or by linear electron transport to oxaloacetate, nitrite or oxygen (Mehler-reaction). The interrelationships between these poising mechanisms turn out to be strictly hierarchical. In the presence of antimycin A, an inhibitor of ferredoxin-dependent cyclic electron transport, the reduction of both, oxaloacetate and nitrite, but not that of oxygen restores CO2 fixation. When oxaloacetate and nitrite are added at low concentrations simultaneously during steady-state CO2 fixation, the reduction of nitrite is clearly preferred over the reduction of oxaloacetate, but CO2 fixation is not influenced. Nitrite reduction is not decreased upon addition of oxaloacetate, but vice versa. This is due to the regulation of NADP-malate dehydrogenase activation by electron pressure via the ferredoxin/thioredoxin system on the one hand, and by the NADPH/(NADP+NADPH) ratio (anabolic reduction charge, ARC) on the other hand. Thus the closing of the malate valve prevents drainage of reducing equivalents from the chloroplast (1) when a low ARC indicates a high demand for NADPH in the stroma and (2) when nitrite reduction reduces the electron pressure at ferredoxin. The malate valve is opened when cyclic electron transport is inhibited by antimycin A. Under these conditions the rate of malate formation is higher than in the absence of the inhibitor even in the presence of oxaloacetate, thus indicating that the regulation of the malate valve functions at various redox states of the acceptor side of Photosystem I.Abbreviations ARC anabolic reduction charge (NADPH/(NADP+NADPH)) - Chl chlorophyll - DTT dithiothreitol; Fd-ferredoxin - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetate - PS photosystem - qN non-photochemical quenching - qP photochemical quenching - E quantum efficiency of PS II Dedicated to Prof. Dr. Hans Walter Heldt on the occasion of his 60th birthday.  相似文献   
4.
The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.Abbreviations ADPGlc-PPase ADPglucose pyrophosphorylase - Glc6P glucose-6-phosphate - PGA 3-phosphoglyceric acid  相似文献   
5.
Zusammenfassung 1. Pseudoisocyanin gibt mit den dicht gelagerten elektronegativen Gruppen von Mukopolysacchariden in Geweben und Lösungen, wie auch mit synthetischen Produkten mit linear angeordneten elektronegativen Gruppen in Lösung wie z. B. Polyäthylensulfosäuren eine metachromatische Reaktion mit der charakteristischen langwelligen Bande (vgl.Scheibe u.Schauer 1958). Die elektronegativen Gruppen binden die Farbstoffmoleküle elektrostatisch und bilden die Gruppierung des reversiblen Polymerisates.2. Die metachromatische Reaktion mit der reversibel polymeren Bande läßt sich in Gewebsschnitten deutlich demonstrieren. Das Farbstoffpolymerisat absorbiert in Lösung bei der gleichen Wellenlänge wie im Gewebe, wodurch die Gleichheit der Vorgänge im Gewebe und in Lösung bewiesen ist.3. Das Pseudoisocyanin erscheint für die Darstellung von Mukopolysacchariden besonders geeignet, da nach früheren Arbeiten (Scheibe 1938,Zimmermann u.Scheibe 1956) schon eine monomolekulare Schicht die reversibel polymere Bande und damit die Metachromasie beobachtbar macht. Ferner sind bei Betrachtung der mit Pseudoisocyanin gefärbten Schnitte im monochromatischen Licht bei der Wellenlänge der polymeren Absorption Spuren von Mukopolysacchariden noch deutlich zu erkennen, die bei Betrachtung im weißen Licht unauffällig bleiben.4. An Hand einiger Beispiele (Mastzellen, Knorpelgewebe, hyalinisiertes Bindegewebe) wird die Verwendungsmöglichkeit in der Histochemie gezeigt.
Summary 1. Pseudoisocyanin interacts with densly positioned electronegative groups of mucopolysaccharides in tissues and in solutions in the same way as it interacts with linear positioned electronegative groups of synthetic products in solution (for instance polyaethylensulfoacids). The metachromasia, which is due to this reaction of pseudoisocyanin with mucopolysaccharides shows a characteristic wave-band 5727 Å (Scheibe undSchauer 1958). The dye is bound electrostatically by the electronegative groups in form of a reversible polymerisate.2. The metachromatic reaction with the reversible polymerisate has been demonstrated in tissue-sections. The polymerisate with the dyestuff is shown to adsorb light at the same wavelength in tissues as in solutions. This finding confirms the identity of the reaction in tissues and in solutions.3. Pseudoisocyanin seems to be especially suited for the detection of mucopolysaccharides, for even a monomolecular layer of dyestuff allows the observation of the reversible polymeric band and therefore shows metachromasia. Further, after staining with pseudoisocyanin even small trans of mucopolysac charides which are not visible in the white light can be demonstrated by means of monochromatic light at the wave-length of the polymer absorption.4. As shown by staining mastcells, cartilage-tissue, hyaliniced connectivetissue, pseudoisocyanin seems to be of use for appliance in histochemistry.


Mit 4 Textabbildungen  相似文献   
6.
In PC12 cells, retinoic acid (RA) stimulates the expression of p75NGFR, a component of the nerve growth factor (NGF) receptor, as indicated by a rapid increase in p75NGFR mRNA, an increase in the binding of 125I-labeled NGF to p75NGFR, and an increase in the binding of NGF to low affinity sites. RA-treated cells are more sensitive to NGF, but not to either fibroblast growth factor or phorbol 12-myristate 13-acetate, showing that RA has a specific effect on the responsiveness of PC12 cells to NGF. Exposure to RA leads neither to an increase in the expression of mRNA for trk, another component of the NGF receptor, nor to an increase in binding to high affinity receptors, suggesting that an increase in the expression of p75NGFR is sufficient to make cells more sensitive to NGF. This work suggests that, in addition to having direct effects on gene expression, RA can indirectly modulate differentiation of neurons by modifying their expression of cell surface receptors to peptide growth factors.  相似文献   
7.
Intact etioplasts with an intactness of 85% and with a cytosolic and a mitochondrial contamination of less than 10% were isolated from 8-d-old dark-grown barley (Hordeum vulgare) leaves. These plastids contained starch equivalent to 21.5 μmol of glucose per mg protein. From various likely precursors applied to isolated etioplasts, only dihydroxyacetone phosphate (DHAP) had significant effects on metabolite levels and on the internal ATP/ADP ratio. The concentration dependence of DHAP uptake exhibited saturation characteristics with half saturation at 0.36 mm DHAP and a maximal velocity of 6.6 μmol mg−1 of protein h−1. The transport was significantly inhibited by inorganic phosphate, pyridoxal-5′-phosphate, and 4,4′-diisothiocyano-2,2′-stilbenedisulfonate. The rate of glucose-6-phosphate uptake was much lower and not saturable up to a concentration of 10 mm. Exogenously applied [14C]DHAP was incorporated into starch at a rate of 0.14 μmol of DHAP mg−1 of protein h−1. Enzyme activities required to convert DHAP into starch were found to be present in etioplasts. Furthermore, enzymes generating ATP from DHAP for ADPglucose synthesis were also detected. Finally, a scheme is presented suggesting DHAP uptake to serve both as carbon skeleton and as energy source for starch synthesis, mediated by a translocator with properties similar to those of the triose phosphate translocator from chloroplasts.  相似文献   
8.
The properties of the system which reverses light modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in pea chloroplasts were examined. A factor catalyzing dark modulation of these enzymes was found. This factor cochromatographed with thioredoxin in all systems used (Sephacryl S-200, Sephadex G-75, DEAE-cellulose). Inhibition of dithiothreitol-dependent modulation and of dark reversal by antibody against Escherichia coli thioredoxin further suggest that the dark factor is in fact thioredoxin. It appears that the reaction is the reverse of the previously described dithiothreitol-dependent thioredoxin-catalyzed modulation of enzymes. The limiting step in vitro seems to be the oxidation of thioredoxin during the dark period.  相似文献   
9.
10.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号