首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   5篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1973年   2篇
  1946年   11篇
  1945年   21篇
  1944年   18篇
  1943年   17篇
排序方式: 共有144条查询结果,搜索用时 171 毫秒
1.
The cooperative effect of inositol hexakisphosphate (IHP), bezafibrate (BZF), and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of IHP, BZF, and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of 2,3-diphosphoglycerate (2,3-DPG), which have been attributed to a low affinity conformation of the tetramer. Addition to HbNO of two allosteric effectors together (such as IHP and BZF, or IHP and CFA) further stabilizes the low affinity conformation of the ligated hemoprotein (i.e., HbNO). Moreover, in the presence of saturating amounts of IHP, the affinity of BZF and CFA for HbNO increases by about fifteenfold. Likewise, in the presence of both IHP and BZF, as well as in IHP and CFA, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced with respect to that observed in the presence of IHP, BZF, or CFA alone, which in turn is lower than that reported in the absence of any allosteric effector. All the data were obtained at pH 7.0 (in 1.0 × 10−1 M N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]/NaOH buffer system plus 1.0 × 10−1 M NaCl), as well as at 100 K and/or 20°C. The results here reported represent clearcut evidence for the cooperative and specific (i.e., functionally relevant) binding of IHP, BZF, and CFA to Hb.  相似文献   
2.
3.
4.
Cigarette smoke is a mixture of chemicals having direct and/or indirect toxic effects on different lung cells. We investigated the effect of cigarette smoke on human lung fibroblasts (HFL-1) oxidation and apoptosis. Cells were exposed to various concentrations (1, 5, and 10%) of cigarette smoke extract (CSE) for 3 h, and oxidative stress and apoptosis were assessed by fluorescence-activated cell sorting and confocal laser fluorescence microscopy. Both oxidative stress and apoptosis exhibited a dose-response relationship with CSE concentrations. Lung fibroblasts also showed marked DNA fragmentation at the Comet assay after exposure to 10% CSE. Coincubation of HLF-1 cells with N-acetylcysteine (1 mM) during CSE exposure significantly reduced oxidative stress, apoptosis, and DNA fragmentation, whereas preincubation (3 h) with the glutathione-depleting agent buthionine sulfoximine (125 microM) produced a significant increase of oxidative stress. Cigarette smoke is a potent source of oxidative stress, DNA damage, and apoptosis for HFL-1 cells, and we speculate that this could contribute to the development of pulmonary emphysema in the lungs of smokers.  相似文献   
5.
Twelve testable hypotheses on the geobiology of weathering   总被引:1,自引:0,他引:1  
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.  相似文献   
6.
7.
Peroxisome proliferator activated receptors (PPARs) are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation, and cell differentiation. Many of their biological activities have been studied by using selective synthetic activators (mainly fibrates and thiazolidinediones) which have been already employed in therapeutic protocols. Both kinds of drugs, however, showed pharmacotoxicological profiles, which cannot be ascribed by any means to receptor activation. To better understand these non-receptorial or extrareceptorial aspects, the effect of different PPAR-ligands on the metabolic status of human HL-60 cell line has been investigated. At this regard, NMR analysis of cell culture supernatants was accomplished in order to monitor modifications at the level of cell metabolism. Cell growth and chemiluminescence assays were employed to verify cell differentiation. Results showed that all the considered PPAR-ligands, although with different potencies and independently from their PPAR binding specificity, induced a significant derangement of the mitochondrial respiratory chain consisting in a strong inhibition of NADH-cytochrome c reductase activity. This derangement has been shown to be strictly correlated to the adaptive metabolic modifications, as evidenced by the increased formation of lactate and acetate, due to the stimulation of anaerobic glycolysis and fatty acid beta-oxidation. It is worthy noting that the mitochondrial dysfunction appeared also linked to the capacity of any given PPAR-ligand to induce cell differentiation. These data could afford an explanation of biochemical and toxicological aspects related to the therapeutic use of synthetic PPAR-ligands and suggest a revision of PPAR pathophysiologic mechanisms.  相似文献   
8.
We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs. palo colorado vs. dwarf vs. pasture) and topographic position (ridge vs valley) accounted for 11–60% of the total variation in soil properties. Nevertheless, mean soil properties differed significantly among vegetation types, between topographic positions, and between seasons (wet vs dry). Differences among vegetation types reflected soil properties (e.g., bulk density, soil moisture, Na, P, C, N, S) that typically are related to biological processes and inputs of water. In forests, differences between topographic positions reflected elements (e.g., Ca, Mg, K, and Al) that typically are associated with geochemical processes; however, the nutrients and elements responsible for topographic differences in dwarf forest were different from those in other forest types. In pastures, differences between topographic positions were associated with the same soil properties responsible for differences among the other vegetation types. Pastures also had reduced N levels and different soil characteristics compared to undisturbed tabonuco forest. The only soil parameter that differed significantly between seasons was soil moisture. Soils of the LEF do not support the contention that N becomes limiting with an increase in elevation, and suggest that absolute pool sizes of N and P are not responsible for the reduction in productivity with elevation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号