首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有12条查询结果,搜索用时 140 毫秒
1.
2.
Environmental factors, such as viral infection, have been implicated as potential triggering events leading to the initial destruction of pancreatic beta cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), the active component of a viral infection that stimulates antiviral responses in infected cells, has been shown in combination with interferon-gamma (IFN-gamma) to stimulate inducible nitric oxide synthase (iNOS) expression and nitric oxide production and to inhibit beta cell function. Interferon regulatory factor-1 (IRF-1), the activation of which is induced by dsRNA, viral infection, and IFN-gamma, regulates the expression of many antiviral proteins, including PKR, type I IFN, and iNOS. In this study, we show that IRF-1 is not required for dsRNA + IFN-gamma-stimulated iNOS expression and nitric oxide production by mouse islets. In contrast to islets, dsRNA + IFN-gamma fails to induce iNOS expression or nitric oxide production by macrophages isolated from IRF-1(-/-) mice; however, dsRNA + IFN-gamma induces similar levels of IL-1 release by macrophages isolated from both IRF-1(-/-) and IRF-1(+/+) mice. Importantly, we show that dsRNA- or dsRNA + IFN-gamma-stimulated IRF-1 expression by mouse islets and peritoneal macrophages is independent of PKR. These results indicate that IRF-1 is required for dsRNA + IFN-gamma-induced iNOS expression and nitric oxide production by mouse peritoneal macrophages but not by mouse islets. These findings suggest that dsRNA + IFN-gamma stimulates iNOS expression by two distinct PKR-independent mechanisms; one that is IRF-1-dependent in macrophages and another that is IRF-1-independent in islets.  相似文献   
3.
Viral infection has been implicated as a triggering event that may initiate beta-cell damage during the development of autoimmune diabetes. In this study, the effects of the viral replicative intermediate, double-stranded RNA (dsRNA) (in the form of synthetic polyinosinic-polycytidylic acid (poly IC)) on islet expression of inducible nitric oxide synthase (iNOS), production of nitric oxide, and islet function and viability were investigated. Treatment of rat islets with poly(IC) + interferon-gamma (IFN-gamma) stimulates the time- and concentration-dependent expression of iNOS and production of nitrite by rat islets. iNOS expression and nitrite production by rat islets in response to poly(IC) + IFN-gamma correlate with an inhibition of insulin secretion and islet degeneration, effects that are prevented by the iNOS inhibitor aminoguanidine (AG). We have previously shown that poly(IC) + IFN-gamma activates resident macrophages, stimulating iNOS expression, nitric oxide production and interleukin-1 (IL-1) release. In addition, in response to tumor necrosis factor-alpha (TNF-alpha) + lipopolysaccharide, activated resident macrophages mediate beta-cell damage via intraislet IL-1 release followed by IL-1-induced iNOS expression by beta-cells. The inhibitory and destructive effects of poly(IC) + IFN-gamma, however, do not appear to require resident macrophages. Treatment of macrophage-depleted rat islets for 40 h with poly(IC) + IFN-gamma results in the expression of iNOS, production of nitrite, and inhibition of insulin secretion. The destructive effects of dsRNA + IFN-gamma on islets appear to be mediated by a direct interaction with beta-cells. Poly IC + IFN-gamma stimulates iNOS expression and inhibits insulin secretion by primary beta-cells purified by fluorescence-activated cell sorting. In addition, AG prevents the inhibitory effects of poly(IC) + IFN-gamma on glucose-stimulated insulin secretion by beta-cells. These results indicate that dsRNA + IFN-gamma interacts directly with beta-cells stimulating iNOS expression and inhibiting insulin secretion in a nitric oxide-dependent manner. These findings provide biochemical evidence for a novel mechanism by which viral infection may directly mediate the initial destruction of beta-cells during the development of autoimmune diabetes.  相似文献   
4.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  相似文献   
5.
6.
7.
Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration. Interleukin-1 (IL-1) appears to mediate dsRNA + IFN-gamma-induced islet damage in a nitric oxide-dependent manner, as the interleukin-1 receptor antagonist protein prevents dsRNA + IFN-gamma-induced iNOS expression, inhibition of insulin secretion, and islet degeneration. IL-1beta is synthesized as an inactive precursor protein that requires cleavage by the IL-1beta-converting enzyme (ICE) for activation. dsRNA and IFN-gamma stimulate IL-1beta expression and ICE activation in primary beta-cells, respectively. Selective ICE inhibition attenuates dsRNA + IFN-gamma-induced iNOS expression by primary beta-cells. In addition, poly(I-C) + IFN-gamma-induced iNOS expression and nitric oxide production by human islets are prevented by interleukin-1 receptor antagonist protein, indicating that human islets respond to dsRNA and IFN-gamma in a manner similar to rat islets. These studies provide biochemical evidence for a novel mechanism by which viral infection may initiate beta-cell damage during the development of autoimmune diabetes. The viral replicative intermediate dsRNA stimulates beta-cell production of pro-IL-1beta, and following cleavage to its mature form by IFN-gamma-activated ICE, IL-1 then initiates beta-cell damage in a nitric oxide-dependent fashion.  相似文献   
8.
9.
Properties of the myocardial PM-FABP were studied in normal and STZ-diabetic rats. The fluorescent fatty acids trans-parinaric and cis-parinaric acids were used as analogs of straight-chain (saturated) and kinked-chain (unsaturated) fatty acids respectively. Parinaric acid binding was sensitive to trypsin. Trans-parinaric acid binding was more sensitive to this protease than the binding of cis-parinaric acid. Based on the difference in sensitivity of parinaric acid binding we believe that there are two separate binding sites associated with myocardial PM-FABP; one for unsaturated fats and the other for saturated fats. Diabetes enhanced both cis- and trans-parinaric acid binding capacity in cardiomyocytes; cis-parinaric acid by 2 fold and trans-parinaric acid by 2.6 fold. In addition, there was a concomitant accumulation of free fatty acids and triglycerides in the hearts of the diabetic animals. There was a 2.2 fold increase for fatty acids and a 1.6 fold increase for trigylcerides. This association between myocardial fatty acid build-up and enhanced myocardial PM-FABP during diabetes suggest that this carrier protein might have contributed to lipid accumulation in the hearts of the diabetic rats.  相似文献   
10.
The inhibitory actions of 15-deoxy-Delta(12,14)-prostaglandin J(2) (PGJ(2)) on inflammatory gene expression have been attributed to the ability of this prostaglandin to inhibit the activation of NF-kappaB. In this study, we have identified an additional signaling pathway sensitive to inhibition by PGJ(2). We show that PGJ(2) inhibits interferon (IFN)-gamma-stimulated phosphorylation and DNA-binding activity of STAT1. The inhibitory actions on STAT1 phosphorylation are first apparent after a 1- to 2-h incubation and are maximal after a 6-h incubation with PGJ(2), and they correlate with the expression of heat shock protein (HSP)70 in islets. In previous studies, we have correlated the inhibitory actions of PGJ(2) on inducible nitric oxide synthase (iNOS) expression and NF-kappaB activation in response to IL-1 with the increased expression of HSP70. Using overexpression and antisense depletion, we provide evidence that HSP70 does not mediate the inhibitory actions of PGJ(2) on IL-1-induced NF-kappaB or IFN-gamma-induced STAT1 activation or cytokine-stimulated iNOS expression by beta-cells. Last, we show that the inhibitory actions of a short 6-h pulse with PGJ(2) on IL-1 plus IFN-gamma-stimulated iNOS expression and NO production by beta-cells are persistent for extended periods (< or =48 h). These findings suggest that PGJ(2) inhibits multiple cytokine-signaling pathways (IL-1 and IFN-gamma), that the inhibitory actions are persistent for extended periods, and that increased HSP70 expression correlates with, but does not appear to mediate, the inhibitory actions of PGJ(2) on IL-1 and IFN-gamma signaling in beta-cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号