首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有36条查询结果,搜索用时 437 毫秒
1.
Pituitary adenylate cyclase-activating peptide (PACAP) is widely distributed throughout the nervous system. PACAP not only acts as a neurotransmitter but also elicits a broad spectrum of biological action via the PACAP-specific receptor, PAC1. However, no studies have investigated PACAP and PAC1 in the periodontal ligament (PDL), so we aimed to perform this investigation in rats after tooth luxation. In the PDL of an intact first molar, there are few osteoclasts and osteoblasts. However, at days 3 and 5 after luxation, large PAC1-positive cells, thought to be osteoclasts because of their expression of the osteoclast marker, tartrate-resistant acid phosphatase, were detected in appreciable numbers. Osteoblast numbers increased dramatically on day 7 after luxation, and PAC1-positive mononuclear small cells were increased at day 14, many of which expressed the osteoblast marker, alkaline phosphatase. PACAP-positive nerve fibers were rarely detected in the PDL of intact first molars, but were increasingly evident at this site on days 5 and 7 after luxation. Double-immunofluorescence analysis demonstrated the relationship between PACAP-positive nerve fibers and PAC1-positive osteoclasts/-blasts in the PDL. At 5 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoclasts. At 7 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoblasts. These results suggest that PACAP may have effects on osteoclasts and osteoblasts in the PDL after tooth luxation and thus regulate bone remodeling after these types of injury.  相似文献   
2.
3.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
4.
It is assumed that CD8(+) cytotoxic T lymphocytes (CTLs) mediate direct lysis of allografts and that their growth, differentiation, and activation are dependent upon cytokine production by CD4(+) helper T lymphocytes. In the present study, the effector cells responsible for the rejection of i.p. allografted, CTL-resistant Meth A tumor cells from C57BL/6 mice were characterized. The cytotoxic activity was associated exclusively with peritoneal exudate cells and not with the cells in lymphoid organs or blood. On day 8, when the cytotoxic activity reached a peak, 3 types of cells (i.e., lymphocytes, granulocytes, and macrophages) infiltrated into the rejection site; and allograft-induced macrophages (AIM) were cytotoxic against the allograft. Bacterially-elicited macrophages also exhibited cytotoxic activity (approximately 1/2 of that of AIM) against Meth A cells, whereas the cytotoxic activity of AIM against these cells but not that of bacterially-elicited macrophages was completely inhibited by the addition of donor (H-2(d))-type lymphoblasts, suggesting H-2(d)-specific cytotoxicity of AIM against Meth A cells. In contrast, resident macrophages were inactive toward Meth A cells. Morphologically, the three-dimensional appearance of AIM showed them to be unique large elongated cells having radiating peripheral filopodia and long cord-like extensions arising from their cytoplasmic surfaces. The ultrastructural examination of AIM revealed free ribosomes in their cytoplasm, which was often deformed by numerous large digestive vacuoles. These results indicate that AIM are the H-2(d)-specific effector cells for allografted Meth A cells and are a more fully activated macrophage with unique morphological features.  相似文献   
5.
Collagen, which is used as a biomaterial, is the most abundant protein in mammals. We have previously reported that a dendrimer modified with collagen model peptides, (Gly‐Pro‐Pro)5, formed a collagen‐like triple‐helical structure, showing thermal reversibility. In this study, various collagen‐mimic dendrimers of different generations and at different binding ratios were synthesized, to investigate the relationship between the peptide clustering effect and the higher order structure formation. The formation of the higher order structure was influenced by the binding ratios of the peptide to the dendrimer, but was not influenced by the dendrimer generation. A spacer, placed between the dendrimer terminal group and the peptide, negatively contributed to the formation of the higher order structure. The collagen model peptides were also attached to poly(allylamine) (PAA) and poly‐L ‐lysine (poly(Lys)) to compare them with the collagen‐mimic dendrimers. The PAA‐based collagen‐mimic compound, bearing more collagen model peptides than the dendrimer, exhibited a thermally stable higher order structure. In contrast, this was not observed for the collagen‐mimic polymers based on poly(Lys). Therefore, dendrimers and vinyl polymers act as a scaffold for collagen model peptides and subsequently induce higher order structures. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 640–648, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
6.
Connecting threads: epigenetics and metabolism   总被引:1,自引:0,他引:1  
Katada S  Imhof A  Sassone-Corsi P 《Cell》2012,148(1-2):24-28
Chromatin-modifying enzymes have long been proposed to be the authors of an epigenetic language, but the origin and meaning of the messages they write in chromatin are still mysterious. Recent studies suggesting that the effects of diet can be passed on epigenetically to offspring add weight to the idea that histones act as metabolic sensors, converting changes in metabolism into stable patterns of gene expression. The challenge will now be to understand how localized fluctuations in levels of metabolites control chromatin modifiers in space and time, translating a dynamic metabolic state into a histone map.  相似文献   
7.
The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs), DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR)-2 (also known as CZH2 or Docker) domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.  相似文献   
8.
To investigate the pathophysiological mechanisms of immune-mediated peripheral neuropathies, we studied the effects of sera from patients with Guillain-Barré syndrome (GBS) on the Cav2.1 voltage-dependent calcium channel (VDCC) current in Purkinje cells. Using the whole-cell recording technique, Cav2.1 VDCC current was measured in cerebellar Purkinje cells in the presence of serum from GBS patients with acute motor axonal neuropathy (AMAN) or acute inflammatory demyelinating polyneuropathy (AIDP). The AMAN patient sera significantly inhibited the Cav2.1 VDCC current compared with healthy volunteer sera, and this inhibition was fully reversible by washing out the AMAN serum. Similarly, IgG purified from AMAN sera also inhibited the Cav2.1 VDCC current. However, the activation and inactivation kinetics of the Cav2.1 VDCC currents were not affected by serum from an AMAN patient. Moreover, the VDCC current of Purkinje cells was also inhibited by IgG anti-GM1 monoclonal antibody (anti-GM1 mAb). In an immunocytochemical study using double fluorescence staining, Purkinje cells were stained by monoclonal IgG anti-GM1 mAb. In contrast, AIDP patient and healthy volunteer sera did not affect the Cav2.1 VDCC current. These results suggest that in some case of GBS, particularly of AMAN patients with IgG anti-GM1 mAb, muscle weakness may be induced by dysfunction of Cav2.1 VDCC functioning at the motor nerve terminals. Special issue article in honor of Dr. George DeVries.  相似文献   
9.
With the aim of discovering a novel class of fructose-1,6-bisphosphatase (FBPase) inhibitors, a series of compounds based on tricyclic scaffolds was synthesized. Extensive SAR studies led to the finding of 8l with an IC50 value of 0.013 μM against human FBPase. An X-ray crystallographic study revealed that 8l bound at AMP binding sites of human liver FBPase with hydrogen bonding interactions similar to AMP.  相似文献   
10.
Members of the RecQ family of DNA helicases are involved in the cellular response to DNA damage and are regulated in the cell-cycle. However, little is known about RecQ5, one of these members. The level of RECQ5/QE, Drosophila melanogaster RecQ5, was increased after the exposure of cultured cells to methyl-methanesulfonate. Transgenic flies that overexpressed RECQ5/QE in their developing eye primordia showed mild roughening of the ommatidial lattice. DNA-damaging agents and the mei-41 mutation enhanced the phenotype caused by RECQ5/QE overexpression. Overexpression of RECQ5/QE perturbed the progression of the cell-cycle in response to DNA damage in the eye imaginal discs. These results suggest that RECQ5/QE interacts with components of the cell-cycle during its progression in response to DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号