首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 109 毫秒
1.
We compared nitrate concentrations, phytoplankton biomass, and phytoplankton community structure in lakes fed by glacier melt and snowmelt (GSF lakes) and by snowmelt only (SF lakes) within North Cascades National Park (NOCA) in Washington State, USA. In the U.S. Rocky Mountains, glacier melting has greatly increased nitrate concentrations in GSF lakes (52–236 µg NO3–N L?1) relative to SF lakes (1–14 µg NO3–N L?1) and thereby stimulated phytoplankton changes in GSF lakes. Considering NOCA contains approximately one-third of the glaciers in the continental U.S., and many mountain lakes that receive glacier meltwater inputs, we hypothesized that NOCA GSF lakes would have greater nitrate concentrations, greater phytoplankton biomass, and greater abundance of nitrogen-sensitive diatom species than NOCA SF lakes. However, at NOCA nitrate concentrations were much lower and differences between lake types were small compared to the Rockies. At NOCA, nitrate concentrations averaged 13 and 5 µg NO3–N L?1 in GSF and SF lakes, respectively, and a nitrate difference was not detectable in several individual years. There also was no difference in phytoplankton biomass or abundance of nitrogen-sensitive diatoms between lake types at NOCA. In contrast to the Rockies, there also was not a significant positive relationship between watershed percent glacier area and lake nitrate at NOCA. Results demonstrate that biogeochemical responses to global change in Western U.S. mountain lake watersheds may vary regionally. Regional differences may be affected by differing nitrogen deposition, climate, geology, or microbial processes within glacier environments, and merit further investigation.  相似文献   
2.
The fossil record of diatoms in lake sediments can be used to assess the effects of climate variability on lake ecosystems if ecological relationships between diatom community structure and environmental parameters are well understood. Cyclotella sensu lato taxa are a key group of diatoms that are frequently dominant members of phytoplankton communities in low‐ to moderate‐productivity lakes. Their relative abundances have fluctuated significantly in palaeolimnological records spanning over a century in arctic, alpine, boreal and temperate lakes. This suggests that these species are sensitive to environmental change and may serve as early indicators of ecosystem effects of global change. Yet patterns of change in Cyclotella species are not synchronous or unidirectional across, or even within, regions, raising the question of how to interpret these widespread changes in diatom community structure. We suggest that the path forward in resolving seemingly disparate records is to identify clearly the autecology of Cyclotella species, notably the role of nutrients, dissolved organic carbon and light, coupled with better consideration of both the mechanisms controlling lake thermal stratification processes and the resulting effects of changing lake thermal regimes on light and nutrients. Here we begin by reviewing the literature on the resource requirements of common Cyclotella taxa, illustrating that many studies reveal the importance of light, nitrogen, phosphorus, and interactions among these resources in controlling relative abundances. We then discuss how these resource requirements can be linked to shifts in limnological processes driven by environmental change, including climate‐driven change in lakewater temperature, thermal stratification and nutrient loading, as well as acidification‐driven shifts in nutrients and water clarity. We examine three case studies, each involving two lakes from the same region that have disparate trends in the relative abundances of the same species, and illustrate how the mechanisms by which these species abundances are changing can be deciphered. Ultimately, changes in resource availability and water clarity are key factors leading to shifts in Cyclotella abundances. Tighter integration of the autecology of this important group of diatoms with environmental change and subsequent alterations in limnological processes will improve interpretations of palaeolimnological records, and clarify the drivers of seemingly disparate patterns in fossil records showing widespread and rapid changes across the northern hemisphere.  相似文献   
3.
Plankton in mountain lakes are confronted with generally higher levels of incident ultraviolet radiation (UVR), lower temperatures, and shorter growing seasons than their lower elevation counterparts. The direct inhibitory effects of high UVR and low temperatures on montane phytoplankton are widely recognized. Yet little is known about the indirect effects of these two abiotic factors on phytoplankton, and more specifically whether they alter zooplankton grazing rates which may in turn influence phytoplankton. Here, we report the results of field microcosm experiments that examine the impact of temperature and UVR on phytoplankton growth rates and zooplankton grazing rates (by adult female calanoid copepods). We also examine consequent changes in the absolute and relative abundance of the four dominant phytoplankton species present in the source lake (Asterionella formosa, Dinobryon sp., Discostella stelligera, and Fragilaria crotonensis). All four species exhibited higher growth rates at higher temperatures and three of the four species (all except Dinobryon) exhibited lower growth rates in the presence of UVR versus when shielded from UVR. The in situ grazing rates of zooplankton had significant effects on all species except Asterionella. Lower temperatures significantly reduced grazing rates on Fragilaria and Discostella, but not Dinobryon. While UVR had no effect on zooplankton grazing on any of the four species, there was a significant interaction effect of temperature and UVR on zooplankton grazing on Dinobryon. Discostella and Dinobryon increased in abundance relative to the other species in the presence of UVR. Colder temperatures, the presence of zooplankton, and UVR all had consistently negative effects on rates of increase in overall phytoplankton biomass. These results demonstrate the importance of indirect as well as direct effects of climate forcing by UVR and temperature on phytoplankton community composition in mountain lakes, and suggest that warmer climates and higher UVR levels may favor certain species over others.  相似文献   
4.
5.
6.
We performed a series of in situ batch culture experiments to assess the resource requirements of common diatom taxa in alpine lakes of the central Rocky Mountains of North America. While physiological data are available on the resource requirements of some of these taxa, it is unclear whether intraspecific generalizations can be made across aquatic systems due to the potential development of ecotypes. In these experiments, we used amended lake water for a culture medium and natural diatom populations. Growth kinetics were determined for Asterionella formosa Hassall, Fragilaria crotonensis Kitton, Staurosirella pinnata (Ehr.) Williams and Round and Tetracyclus glans (Ehr.) Mills. Staurosirella pinnata, a historically abundant alpine diatom, had very low N and P requirements. Asterionella formosa and F. crotonensis, generally considered meso- or eutrophic species, exhibited low P requirements if N and Si were in moderate supply. Tetracyclus glans had the highest Si requirement. These experiments reveal that the recent changes in diatom community structure in these alpine lakes may be driven by changes in nutrient supply. We suggest that local diatom taxa and a natural culturing medium should be used to obtain more representative algal physiological data from a particular area.  相似文献   
7.
8.

Background

Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems.

Methodology/Principal Findings

We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3 ], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends.

Conclusions/Significance

The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20th-century diatom β-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号