首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
1. Spotted wing drosophila (SWD; Drosophila suzukii Matsumura, 1931) is a polyphagous invasive crop pest native of Southeast Asia able to attack a wide array of host plant species in both cultivated and natural habitats. SWD is now widespread in several mountain regions, but it is still unclear how the species moves to different elevations across the seasons, and how this depends on environmental conditions and food resources. 2. The temporal dynamics of several SWD populations were studied along elevational gradients in the Alps using a synchrony analysis. Twelve transects were selected, covering an overall elevational gradient of 2100 m. SWD abundance was monitored every 2 weeks during the growing season (from June to November 2015) when cultivated and wild hosts are potentially susceptible (i.e. fruits are ripe). 3. Spotted wing drosophila were widely distributed along all the tested elevations, revealing synchrony in population dynamics across ranges in elevation and geographic distance. Synchronised populations were observed at distances of up to 100 km at sites with similar temperatures. The high dispersal potential of the pest together with the seasonal variation in temperature are likely to be the dominant mechanisms causing the observed spatial synchrony. A factor that seemed to reduce synchrony is the large concentration of host plants (i.e. crop) in lowland agricultural landscapes. 4. The spatial synchrony in pest abundance at large spatial scale indicates that the risk of SWD outbreaks is highly dependent on drivers beyond the control of traditional field‐scale management. These findings could help in developing monitoring and predictive models of SWD population dynamics.  相似文献   
2.
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.  相似文献   
3.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.  相似文献   
4.
Oecologia - Elevational gradients are characterized by strong abiotic variation within small geographical distances and provide a powerful tool to evaluate community response to variation in...  相似文献   
5.
6.
Xylem-feeding is apparently the only requirement making an insect a competent vector of the bacterium Xylella fastidiosa, an organism responsible for the devastation of the Southern Italian olive forest and nowadays considered one of the most feared threats to agriculture and landscape in Europe, including vineyards. Here, we used the direct current-electrical penetration graph (DC-EPG) technique to compare and describe the feeding behaviour on grapevine of four xylem-feeding species considered candidate vectors of X. fastidiosa widespread in Europe, namely two spittlebugs (the meadow spittlebug Philaenus spumarius and the spittlebug Neophilaenus campestris) and two sharpshooter leafhoppers (the rhododendron leafhopper Graphocephala fennahi and the green leafhopper Cicadella viridis). We created a standard for the analysis of EPG waveforms recorded with a DC-EPG device, describing feeding activities performed by these insects from stylet insertion into the plant to withdrawal. This standard, along with freely available software, has been developed to harmonize the calculation of feeding behavioural parameters in xylem-feeders. The most relevant differences between the two vector taxa were the probing frequency and the dynamics of xylem ingestion. Sharpshooters tended to perform significantly more probes than spittlebugs. In contrast, the latter spent longer times in low-frequency xylem ingestion, characterized by scattered contractions of the cibarial dilator muscle interspersed with periods of pump inactivity. Cicadella viridis was the species displaying the highest frequency of the electrical pattern found to be associated with X. fastidiosa inoculation in spittlebugs (Xe). Feeding behavioural data presented here represent an important step forward for deepening our knowledge of xylem-sap feeding insects' interaction with both the host plants and the bacterium they transmit.  相似文献   
7.

Hyalesthes obsoletus Signoret (Hemiptera: Auchenorrhyncha: Cixiidae) is a univoltine, polyphagous planthopper that completes its life cycle, including the subterranean nymph cryptic stage, on herbaceous weeds. In vineyards, it can transmit ‘Candidatus Phytoplasma solani’, an obligate parasitic bacterium associated with bois noir (BN) disease of grapevine, from its host plants to grapevine when occasionally feeding on the latter. The main disease management strategies are based on vector(s) control. Insecticide treatments on grapevine canopy are completely inefficient on H. obsoletus, due to its life cycle. Consequently, control of this planthopper focuses on the nymphs living on the roots of their host plants. Such practices, based on herbicide application and/or weed management, can reduce vector density in the vineyard but can impact the environment or may not be applicable, highlighting the necessity for alternative strategies. In this study, the efficacy of entomopathogenic nematodes (EPNs; Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophora) and fungi (EPFs; Beauveria bassiana, Metarhizium anisopliae, Isaria fumosorosea, Lecanicillium muscarium) against H. obsoletus nymphs (EPNs) and adults (EPNs and EPFs) was assessed under laboratory and greenhouse conditions. The majority of examined EPNs and EPFs were able to kill H. obsoletus exhibiting a range of effectiveness. S. carpocapsae (among EPNs) and I. fumosorosea (among EPFs) were found to be the most effective biocontrol agents in all trials carried out. Advantages and limitations of such promising biocontrol agents were discussed. Ecological competency and conditions that can impede or enhance the EPNs and EPFs performance should be investigated to optimize their performance under field conditions.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号