首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
As a result of suppressed recombination, heterogametic sex chromosomes (either Y or W) are usually assumed to gradually shorten over evolutionary time as a way to remove accumulated mutations. However, suppressed recombination removes the most obvious mechanism for excising portions of sex chromosomes. We examined ratios of W/Z chromosome size across 224 bird species from 146 genera. Much of the data were obtained from a previous study (Rutkowska et al. 2012. Biology Letters 8 : 636–638), who, similar to ourselves, found no gradual decrease in W chromosome length over evolutionary time. However, we show an abrupt decrease in W chromosome length at or just after the phylogenetic split between the two extant bird superorders, Paleognathae and Neognathae, indicating that the key to understanding sex chromosome evolution may have little to do with gradual suppression of recombination.  相似文献   
2.
Molecular and Cellular Biochemistry - Neurodegenerative diseases, such as Parkinson’s disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a...  相似文献   
3.
African clawed frogs (Xenopus laevis) endure bouts of severe drought in their natural habitats and survive the loss of approximately 30% of total body water due to dehydration. To investigate molecular mechanisms employed by X. laevis during periods of dehydration, the heat shock protein response, a vital component of the cytoprotective stress response, was characterized. Using western immunoblotting and multiplex technology, the protein levels of HSP27, HSP40, HSP60, HSP70, HSC70, and HSP90 were quantified in the liver, skeletal muscle, kidney, lung, and testes from control frogs and those that underwent medium or high dehydration (~16 or ~30% loss of total body water). Dehydration increased HSP27 (1.45–1.65-fold) in the kidneys and lungs, and HSP40 (1.39–2.50-fold) in the liver, testes, and skeletal muscle. HSP60 decreased in response to dehydration (0.43–0.64 of control) in the kidneys and lungs. HSP70 increased in the liver, lungs, and testes (1.39–1.70-fold) during dehydration, but had a dynamic response in the kidneys (levels increased 1.57-fold with medium dehydration, but decreased to 0.56 of control during high dehydration). HSC70 increased in the liver and kidneys (1.20–1.36-fold), but decreased in skeletal muscle (0.27–0.55 of control) during dehydration. Lastly, HSP90 was reduced in the kidney, lung, and skeletal muscle (0.39–0.69 of control) in response to dehydration, but rose in the testes (1.30-fold). Overall, the results suggest a dynamic tissue-specific heat shock protein response to whole body dehydration in X. laevis.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号