首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   11篇
  2020年   1篇
  2018年   1篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   13篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1927年   1篇
排序方式: 共有170条查询结果,搜索用时 474 毫秒
1.
A E Mast  J J Enghild  G Salvesen 《Biochemistry》1992,31(10):2720-2728
Elucidation of the reactive site loop (RSL) structure of serpins is essential for understanding their inhibitory mechanism. Maintenance of the RSL structure is likely to depend on its interactions with a dominant unit of secondary structure known as the A-sheet. We investigated these interactions by subjecting alpha 1-proteinase inhibitor to limited proteolysis using several enzymes. The P1-P10 region of the RSL was extremely sensitive to proteolysis, indicating that residues P3'-P13 are exposed in the virgin inhibitor. Following cleavage eight or nine residues upstream from the reactive site, the protein noncovalently polymerized, sometimes forming circles. Polymerization resulted from insertion of the P1-P8 or P1-P9 region of one molecule into the A-sheet of an adjacent proteolytically modified molecule. The site of cleavage within the RSL had a distinct effect on the conformational stability of the protein, such that stability increased as more amino acids insert into the A-sheet. We conclude that the A-sheet of virgin alpha 1-proteinase inhibitor resembles that of ovalbumin, except that it contains a bulge where two or three RSL residues are inserted. Insertion of seven or eight RSL residues, allowed by proteolytic cleavage of the RSL, causes expansion of the sheet. It is likely that the RSL of alpha 1-proteinase inhibitor and several serpins exhibits significantly more mobility than is common among other protein inhibitors of serine proteinases.  相似文献   
2.
P A Roche  G S Salvesen  S V Pizzo 《Biochemistry》1988,27(20):7876-7881
Human alpha 2-macroglobulin (alpha 2M) of Mr approximately 720,000 is a proteinase inhibitor whose four identical subunits are arranged to form two adjacent inhibitory units. At present, the spatial arrangement of the two subunits which form one inhibitory unit (the functional "half-molecule") is not known. Treatment of alpha 2M with either 0.5 mM dithiothreitol (DTT) or 4 M urea results in dissociation of the native tetramer into two half-molecules of Mr approximately 360,000. These half-molecules retain trypsin inhibitory activity, but in each case, the reaction results in reassociation of the half-molecules to produce tetramers of Mr approximately 720,000. However, when reacted with plasmin, the preparations of half-molecules have different properties. DTT-induced half-molecules protect the activity of plasmin from inhibition by soybean trypsin inhibitor (STI) without reassociation, while urea-induced half-molecules show no ability to protect plasmin from reaction with STI. High-performance size-exclusion chromatography and sedimentation velocity ultracentrifugation studies were then used to estimate the Stokes radius (Re) of alpha 2M and both DTT- and urea-induced half-molecules of alpha 2M. The Re of tetrameric alpha 2M was 88-94 A, while that of DTT-induced half-molecules was 57-60 A and urea-induced half-molecules 75-77 A. These results demonstrate that DTT- and urea-induced half-molecules have fundamentally different molecular dimensions as well as inhibitory properties. The hydrodynamic data suggest that the urea-induced half-molecule is a "rod"-like structure, although it is not possible to predict the three-dimensional structure of this molecule with the available data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
Interaction of subtilisins with serpins.   总被引:1,自引:0,他引:1       下载免费PDF全文
Serpins are well-characterized inhibitors of the chymotrypsin family serine proteinases. We have investigated the interaction of two serpins with members of the subtilisin family, proteinases that possess a similar catalytic mechanism to the chymotrypsins, but a totally different scaffold. We demonstrate that alpha 1 proteinase inhibitor inhibits subtilisin Carlsberg and proteinase K, and alpha 1 antichymotrypsin inhibits proteinase K, but not subtilisin Carlsberg. When inhibition occurs, the rate of formation and stability of the complexes are similar to those formed between serpins and chymotrypsin family members. However, inhibition of subtilisins is characterized by large partition ratios where more than four molecules of each serpin are required to inhibit one subtilisin molecule. The partition ratio is caused by the serpins acting as substrates or inhibitors. The ratio decreases as temperature is elevated in the range 0-45 degrees C, indicating that the serpins are more efficient inhibitors at high temperature. These aspects of the subtilisin interaction are all observed during inhibition of chymotrypsin family members by serpins, indicating that serpins accomplish inhibition of these two distinct proteinase families by the same mechanism.  相似文献   
4.
Serpins encompass a superfamily of proteinase inhibitors that regulate many of the serine proteinases involved in inflammation and hemostasis. In vitro, many serpins are catalytically inactivated by proteinases that they do not inhibit, leading to the concept of proteolytic down-regulation of serpin inhibitory capacity. The extent to which down-regulation of serpin activity occurs in vivo is debated, since little is known of the rates at which the process occurs. To address this debate, we have measured the rates of inactivation of three serpins, alpha 1-proteinase inhibitor (alpha 1PI), alpha 1-antichymotrypsin (alpha 1ACT), and antithrombin III (ATIII), by three human matrix metalloproteinases (MMPs-1, -2, and -3) thought to be involved in tissue destruction and repair. Our object was to establish a working kinetic model which can be used to predict whether serpin inactivation by these proteinases is likely to occur in vivo. We determined the rates of inactivation of these three serpins by each of the MMPs and compared these to rates of inhibition of the MMPs by an endogenous inhibitor, alpha 2-macroglobulin. An equation designed to predict the extent of substrate hydrolyzed by an enzyme in the presence of an enzyme inhibitor gave the following predictions of the inactivation in vivo: (i) ATIII is unlikely to be inactivated by the MMPs. (ii) MMP-2 (72-kDa gelatinase/type IV collagenase) is unlikely to inactivate any of the three serpins. (iii) MMP-1 (tissue collagenase) will inactivate alpha 1PI and alpha 1ACT only when its concentration saturates that of its controlling inhibitors. (iv) MMP-3 (stromelysin) may inactivate small amounts of alpha 1PI and more significant amounts of alpha 1ACT, even in the presence of its controlling inhibitors. Any physiologic or pathologic inactivation of these serpins by these MMPs that occurs in vivo will probably be due to MMP-3, and will likely only take place in tissues and inflammatory loci where the concentration of MMP inhibitors is depressed.  相似文献   
5.
6.
Cowpox virus effectively inhibits inflammatory responses against viral infection in the chick embryo. This study demonstrates that one of the viral genes necessary for this inhibition, the crmA gene (a cytokine response modifier gene), encodes a serpin that is a specific inhibitor of the interleukin-1 beta converting enzyme. This serpin can prevent the proteolytic activation of interleukin-1 beta, thereby suppressing an interleukin-1 beta response to infection. However, the modification of this single cytokine response is not sufficient to inhibit inflammatory responses. This suggests that cowpox virus encodes several cytokine response modifiers that act together to inhibit the release of pro-inflammatory cytokines in response to infection. These viral countermeasures to host defenses against infection may contribute significantly to the pathology associated with poxvirus infections.  相似文献   
7.
The mechanism of activation of tissue procollagenase by matrix metalloproteinase 3 (MMP-3)/stromelysin was investigated by kinetic and sequence analyses. MMP-3 slowly activated procollagenase by cleavage of the Gln80-Phe81 bond to generate a fully active collagenase of Mr = 41,000. The specific collagenolytic activity of this species was 27,000 units/mg (1 unit = 1 microgram of collagen digested in 1 min at 37 degrees C). Treatment of procollagenase with plasmin or plasma kallikrein gave intermediates of Mr = 46,000. These intermediates underwent rapid autolytic activation, via cleaving the Thr64-Leu65 bond, to give a collagenase species of Mr = 43,000 that exhibited only about 15% of the maximal specific activity. Similarly, (4-aminophenyl)mercuric acetate (APMA) activated procollagenase by intramolecular cleavage of the Val67-Met68 bond to generate a collagenase species of Mr = 43,000, but with only about 25% of the maximal specific activity. Subsequent incubation of the 43,000-Mr species with MMP-3 resulted in rapid, full activation and generated the 41,000-Mr collagenase by cleaving the Gln80-Phe81 bond. In the case of the proteinase-generated 43,000-Mr species, the action of MMP-3 was approximately 24,000 times faster than that on the native procollagenase. This indicates that the removal of a portion of the propeptide of procollagenase induces conformational changes around the Gln80-Phe81 bond, rendering it readily susceptible to MMP-3 activation. Prolonged treatment of procollagenase with APMA in the absence of MMP-3 also generated a 41,000-Mr collagenase, but this species had only 40% of the full activity and contained Val82 and Leu83 as NH2 termini. Thus, cleavage of the Gln80-Phe81 bond by MMP-3 is crucial for the expression of full collagenase activity. These results suggest that the activation of procollagenase by MMP-3 is regulated by two pathways: one with direct, slow activation by MMP-3 and the other with rapid activation in conjunction with tissue and/or plasma proteinases. The latter event may explain an accelerated degradation of collagens under certain physiological and pathological conditions.  相似文献   
8.
The mechanisms of activation of the precursor of human matrix metalloproteinase 3 (proMMP-3/prostromelysin) by proteinases and (4-aminophenyl)mercuric acetate (APMA) were investigated by kinetic and sequence analyses. Incubation of proMMP-3 with neutrophil elastase, plasma kallikrein, plasmin, or chymotrypsin at 37 degrees C resulted in the formation of MMP-3 of Mr = 45,000 by cleaving of the His82-Phe83 bond. Since this bond is unlikely to be cleaved by these proteinases it was postulated that an initial attack of an activator proteinase on proMMP-3 creates an intermediate form, which is then processed to a more stable form of Mr = 45,000. To test this hypothesis proMMP-3 was incubated with these serine proteinases under conditions that minimize the action of MMP-3. This led to the accumulation of major intermediates of Mr = 53,000 and two minor forms of Mr = 49,000 and 47,000. The 53,000 Mr intermediate generated by human neutrophil elastase resulted from cleavage of the Val35-Arg36 whereas plasma kallikrein cleaved the Arg36-Arg37 and Lys38-Asp39 bonds and chymotrypsin the Phe34-Val35 bond, all of which are located near the middle of the propeptide. Conversion of these intermediates to the fully active 45,000 Mr form of MMP-3 resulted from a bimolecular reaction of the intermediates. A similar short-lived intermediate of Mr = 46,000 generated by APMA was a result of the intramolecular cleavage of the Glu68-Val69 bond, and it was then converted to a stable MMP-3 of Mr = 45,000 by a intermolecular reaction of MMP-3. However, MMP-3 failed to activate proMMP-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
10.
Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号