首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19767篇
  免费   1649篇
  国内免费   1563篇
  2024年   24篇
  2023年   203篇
  2022年   346篇
  2021年   1020篇
  2020年   690篇
  2019年   831篇
  2018年   802篇
  2017年   567篇
  2016年   806篇
  2015年   1216篇
  2014年   1435篇
  2013年   1508篇
  2012年   1853篇
  2011年   1621篇
  2010年   987篇
  2009年   899篇
  2008年   1042篇
  2007年   928篇
  2006年   824篇
  2005年   792篇
  2004年   636篇
  2003年   590篇
  2002年   481篇
  2001年   332篇
  2000年   287篇
  1999年   297篇
  1998年   201篇
  1997年   185篇
  1996年   195篇
  1995年   157篇
  1994年   173篇
  1993年   124篇
  1992年   132篇
  1991年   124篇
  1990年   97篇
  1989年   93篇
  1988年   58篇
  1987年   66篇
  1986年   48篇
  1985年   42篇
  1984年   52篇
  1983年   33篇
  1982年   21篇
  1981年   21篇
  1980年   12篇
  1979年   12篇
  1977年   9篇
  1974年   9篇
  1973年   11篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
2.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
3.
4.
5.
6.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
7.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
8.
Survivin is a multitasking protein that can inhibit cell death and that is essential for mitosis. Due to these prosurvival activities and the correlation of its expression with tumor resistance to conventional cancer treatments, survivin has received much attention as a potential oncotherapeutic target. Nevertheless, many questions regarding its exact role at the molecular level remain to be elucidated. In this study we ask whether the extreme C- and NH2 termini of survivin are required for it to carry out its cytoprotective and mitotic duties. When assayed for their ability to act as a cytoprotectant, both survivin1–120 and survivin11–142 were able to protect cells against TRAIL-mediated apoptosis, but when challenged with irradiation cells expressing survivin11–142 had no survival advantage. During mitosis, however, removing the NH2 terminal 10 amino acids (survivin11–142) had no apparent effect but truncating 22 amino acids from the C-terminus (survivin1–120) prevented survivin from transferring to the midzone microtubules during anaphase. Collectively the data herein presented suggest that the C-terminus is required for cell division, and that the NH2 terminus is dispensable for apoptosis and mitosis but required for protection from irradiation.  相似文献   
9.
10.
The Rd gene is expressed in the livers and oviducts of laying hens and codes for the riboflavin-binding protein (RfBP) of egg yolk and egg white. A lambda gt11 cDNA library derived from chicken oviduct poly(A)+ RNA was screened with polyclonal rabbit antiserum to chicken RfBP. Positive clones were isolated and rescreened with a mixed oligonucleotide probe corresponding to residues 20-25 of the mature protein. The largest cDNA clone (969 base pairs) was subcloned into plasmid pIBI21, and the nucleotide sequence was determined by the dideoxynucleotide method. This clone contained the entire coding region for RfBP. The published amino acid sequence of the mature protein was confirmed. In addition, the following 17-residue signal peptide was deduced: Met-Leu-Arg-Phe-Ala-Ile-Thr-Leu-Phe-Ala-Val-Ile-Thr-Ser-Ser-Thr-Cys. Unexpectedly, the nucleotide sequence codes for 2 adjacent arginine residues at the carboxyl terminus that are not observed in the mature protein. The amino acid sequence of RfBP is homologous with bovine milk folate-binding protein. Eight of the nine pairs of cysteines involved in disulfide bonds in RfBP are conserved in folate-binding protein, as are all of the tryptophan residues. Sequence identity between homologous regions of these two vitamin-binding proteins is more than 30%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号