首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2008年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Polat  S. C.  Tuğrul  S.  Çoban  Y.  Basturk  O.  Salihoglu  I. 《Hydrobiologia》1997,366(1-3):157-167
The Sea of Marmara, an intercontinental basin with shallow and narrowstraits, connects the Black and Mediterranean Seas. Data obtained during1991–1996 have permitted the determination of the elementalcomposition of seston in the euphotic zone and the N:P ratio of thesubhalocline waters of the Marmara Sea. Since primary production is alwayslimited to the less saline upper layer (15–20 m), of the Marmara Sea,the subhalocline waters of Mediteranean origin are always rich in nutrients(NO3 + NO2 = 8–10 μm, PO4 = 0.8–1.2 μm) but depleted in dissolvedoxygen (30–50 μm) throughout the basin, yielding an -O_2 : N : P ratio of 178 : 9 : 1. Pollution of the surfacewaters since the 60s has modified the subhalocline nutrient chemistryslightly. In the euphotic zone, the N : P ratio of the seston changes from5.9 to 9.5 between the less and more productive periods. Though the biologyof the Marmara has changed significantly during the previous two decades,the close relationship observed between the elemental composition of thesurface seston and the NO3 : PO4 ratio of thesubhalocline waters strongly suggests that during the whole year primaryproduction throughout the basin and POM export to the lower layer remainnitrogen-limited. This suggestion needs to be confirmed by bio-assays,biological studies and sediment trap data from the upper subhaloclinedepths. Nonetheless, the counterflows in the Marmara basin possessrelatively low N : P ratios in both dissolved and particulate nutrients andextend as far as the adjacent seas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.  相似文献   
3.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   
4.
5.
An individual-based model is developed to examine mechanisms that potentially underlie the observed constancy in fledging weight (2.8-3.2 kg) of Adélie (Pygoscelis adeliae) penguin chicks, in spite of large variability in the abundance of Antarctic krill (Euphausia superba), the primary food source. The model describes the energetic requirements of the chick, with growth resulting from the difference between assimilated energy and respiration. Parameterizations of these metabolic processes are based upon experimental and field observations. Ingestion of Antarctic krill by the chick is dependent on the frequency of food delivery to the chick by the adults, which is based on measured foraging times. The mass, size, and size frequency distribution of Antarctic krill fed to the chick are specified using empirical data. The energy content of the Antarctic krill provided to the chick is taken to be constant or allowed to vary with size. The simulations show that food availability is most critical in the latter portion of chick development, when growth rates and food demands are high. Low food availability during this time must be compensated by either feeding chicks with larger krill of higher caloric value or by increased assimilation efficiency. Periods when small krill with lower caloric value dominate require more frequent feeding of the chicks in order to attain their observed fledging weight. Thus, although the total food energy given to the chick is the main factor determining chick growth, the distribution of food availability relative to chick size (i.e., different net growth rates) and food quality are also factors influencing the fledging weight of penguin chicks. The simulations provide insight into the compensating effects of food delivery, food quality, and metabolic processes that allow Adélie penguin chicks to reach their observed fledging weight in spite of considerable environmental variability in food supply.  相似文献   
6.
Subclinical hypothyroidism has been accused for coronary heart disease, lipid metabolism disorders, neuropsychiatric disorders, infertility or pregnancy related problems with various strength of evidence. Currently there is insufficient knowledge about olfaction and taste functions in subclinical hypothyroidism. Aim of the present study is to investigate the degree of smell and taste dysfunction in patients with subclinical hypothyroidism. 28 subclinical hypothyroid patients, and 31 controls enrolled in the prospective study in Istanbul, Turkey. Subclinical hypothyroid patients were treated with L-thyroxine for 3 months. Psychophysiological olfactory testing was performed using odor dispensers similar to felt-tip pens (“Sniffin’ Sticks”, Burghart, Wedel, Germany). Taste function tests were made using "Taste Strips" (Burghart, Wedel, Germany) which are basically tastant adsorbed filter paper strip. Patients scored lower on psychophysical olfactory tests than controls (odor thresholds:8.1±1.0 vs 8.9±1.1, p = 0.007; odor discrimination:12.4±1.3 vs 13.1±0.9, p = 0.016; odor identification:13.1±0.9 vs 14.0±1.1, p = 0.001; TDI score: 33.8±2.4 vs 36.9±2.1, p = 0.001). In contrast, results from psychophysical gustatory tests showed only a decreased score for “bitter” in patients, but not for other tastes (5.9±1.8 vs 6.6±1.0, p = 0.045). Three month after onset of treatment olfactory test scores already indicated improvement (odor thresholds:8.1±1.0 vs 8.6±0.6, p<0.001; odor discrimination:12.4±1.31 vs 12.9±0.8, p = 0.011; odor identification:13.1±0.9 vs 13.9±0.8, p<0.001; TDI scores:33.8±2.4 vs 35.5±1.7, p<0.001) respectively. Taste functions did not differ between groups for sweet, salty and, sour tastes but bitter taste was improved after 3 months of thyroxin substitution (patients:5.9±1.8 vs 6.6±1.2, p = 0.045). Correlation of changes in smell and taste, with thyroid function test were also evaluated. TSH, fT4 were found have no correlation with smell and taste changes with treatment. However bitter taste found positively correlated with T3 with treatment(r: 0.445, p: 0.018). Subclinical hypothyroid patients exhibited a significantly decreased olfactory sensitivity; in addition, bitter taste was significantly affected. Most importantly, these deficits can be remedied on average within 3 months with adequate treatment.  相似文献   
7.
Phase-line equations for smectic–hexatic phase transitions in liquid crystals were derived using the Landau phenomenological theory. In particular, second-order transitions for the smectic-A–smectic-C (SmA–SmC) and hexatic-B–hexatic-F (or HexI) transitions were studied and the tricritical points for these transitions were located. The calculated phase-line equations were fitted (using experimental data for various liquid crystals) to construct a generalized TX phase diagram. It was shown that the TX phase diagram calculated from the free energy adequately describes the observed behavior of liquid crystals during smectic–hexatic transitions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号