首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A total of 40 symbiotic bacterial strains isolated from root nodules of common bean grown in a soil located in the north of Tunisia were characterized by PCR-RFLP of the 16S rRNA genes. Six different ribotypes were revealed. Nine representative isolates were submitted to phylogenetic analyses of rrs, recA, atpD, dnaK, nifH and nodA genes. The strains 23C40 and 23C95 representing the most abundant ribotype were closely related to Sinorhizobium americanum CFNEI 156(T). S. americanum was isolated from Acacia spp. in Mexico, but this is the first time that this species is reported among natural populations of rhizobia nodulating common bean. These isolates nodulated and fixed nitrogen with this crop and harbored the symbiotic genes of the symbiovar mediterranense. The strains 23C2 and 23C55 were close to Rhizobium gallicum R602sp(T) but formed a well separated clade and may probably constitute a new species. The sequence similarities with R. gallicum type strain were 98.7% (rrs), 96.6% (recA), 95.8% (atpD) and 93.4% (dnaK). The remaining isolates were, respectively, affiliated to R. gallicum, E. meliloti, Rhizobium giardinii and Rhizobium radiobacter. However, some of them failed to re-nodulate their original host but promoted root growth.  相似文献   
2.
3.
Abiotic stresses present a real environmental problem in agriculture field. In our paper, we examine the significance of arbuscular mycorrhizal fungi (AMF) and soil amendment with water retaining superpolymers (hydrogel) on growth and physiology performance of olive plantlets. Our experiment was carried out in nursery conditions, to test the impact of hydrogel (TH) and mycorrhizal fungi (TM), used individually or combined (THM), and compare them with non inoculated plants (TC), to understand and reduce the water stress damage in olive plantlets (cv. Chemlali). We also evaluate interactions between hydrogel, mycorrhizal treatments and water regimes. Results of mycorrhization (M%) show that roots colonized by Rhizophagus irregularis of well-watered plants were about 40.87%. In combined treatment (THM), M% was about 32.14%. Compared to TC treatment, TM treatment enhances significantly the dry weights of the whole plant under the two water regimes. The TM treatment had the highest relative water content (66.50%) and Chl (a?+?b) (0.83 mg g??1) in stressed conditions. We found also that under water stress, the maximal quantum efficiency of the photosystem II measurements in leaves were significantly improved by 50.70% in TH treatment compared to control. For phenolic contents, TH treatment decreased significantly total phenols by 50.10% compared to TC. Our study gives evidence that the use of AMF and the hydrogel separately or in combination may enhance the capacity to avoid drought damages of olive plantlets and improve olive performances.  相似文献   
4.
The effect of the nodule-endophytic Agrobacterium strain 10C2 on nodulation, plant growth and nodule functioning of Phaseolus vulgaris was investigated using two rhizobial strains differing in their sensitivity to the in vitro antibiosis of the Agrobacterium strain. In the case of the sensitive strain, Agrobacterium sp. 10C2 induced a significant decrease in the proportion of pink nodules, probably by an antibiosis effect leading to the reduction in the number of bacteroids and thereby a decrease in total soluble proteins, leghaemoglobin content, photosynthesis and nitrogen fixation. In this case, the Agrobacterium strain behaved like a plant pathogen and the nodule reacted by increasing guaiacol peroxidase (POX) activity, which assures some physiological processes linked to pathogen control. By contrast, in the case of the resistant strain, the proportion of pink nodules increased, and thereby total soluble proteins, leghaemoglobin content, biomass production and nitrogen fixation were enhanced. The Agrobacterium strain is regarded in this case as a plant growth–promoting rhizobacterium and the POX-pathogen reaction was not observed. There was even a decrease in superoxide dismutase activity. The results suggested also that the Agrobacterium strain may be also involved in retarding nodule senescence in the case of the resistant strain.  相似文献   
5.
Nitrogen-fixing capacity (NFC) in nodules of four Medicago truncatula lines inoculated with four strains of Sinorhizobium was assessed, during the plant life cycle, in relation to parameters identified as indices of plant growth, photosynthetic capacity, nodule integrity, and functioning. Differences in duration of the NFC period were observed among symbiotic associations and were correlated with variability on plant biomass production. Senescence appearance and vigor varied in parallel with structural, physiological, and biochemical stability of nodules. Maintenance of a longer high-NFC period was correlated to a higher stimulation of antioxidant enzymes, mainly superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (POX, EC 1.11.1.7), and a consequent longer maintenance of membrane integrity and nodule structure within the first stages of senescence. Salinity and drought stresses interfered with nodule functioning and triggered fast and global nodule senescence, albeit a superiority of nodules having a long high-NFC period. The protective role of POX activity on salt- and drought-stressed nodules was revealed. On the other hand, SOD stimulation was independent of stress application. Another strategy allowing the maintenance of longer NFC in salt-stressed nodules could be the accumulation of starch granules in the senescence-functioning interface of nodules. This finding is currently under investigation. Interestingly, the symbioses with different behaviors of nodule senescence identified in this work would be useful bases for biochemical, genomic, and proteomic studies dissecting nodule senescence.  相似文献   
6.
Nodulated Pisum sativum plants showed the presence of native rhizobia in 16 out of 23 soil samples collected especially in northern and central Tunisia. A total of 130 bacterial strains were selected and three different ribotypes were revealed after PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, dnaK and glnII) assigned 35 isolates to Rhizobium laguerreae, R. ruizarguesonis, Agrobacterium radiobacter, Ensifer meliloti and two putative genospecies. R. laguerreae was the most dominant species nodulating P. sativum with 63%. The isolates 21PS7 and 21PS15 were assigned to R. ruizarguesonis, and this is the first report of this species in Tunisia. Two putative new lineages were identified, since strains 25PS6, 10PS4 and 12PS15 clustered distinctly from known rhizobia species but within the R. leguminosarum complex (Rlc) with the most closely related species being R. indicum with 96.4% sequence identity. Similarly, strains 16PS2, 3PS9 and 3PS18 showed 97.4% and 97.6% similarity with R. sophorae and R. laguerreae, respectively. Based on 16S-23S intergenic spacer (IGS) fingerprinting, there was no clear association between the strains and their geographic locations. According to nodC and nodA phylogenies, strains of Rlc species and, interestingly, strain 8PS18 identified as E. meliloti, harbored the symbiotic genes of symbiovar viciae and clustered in two different clades showing heterogeneity within the symbiovar. All these strains nodulated and fixed nitrogen with pea plants. However, the strains belonging to A. radiobacter and the two remaining strains of E. meliloti were unable to nodulate P. sativum, suggesting that they were non-symbiotic strains. The results of this study further suggest that the Tunisian Rhizobium community is more diverse than previously reported.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号