首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1991年   2篇
  1986年   1篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
Biophysics - Abstract—Variants of miniplasminogen with an altered primary structure have been designed to study previously described changes in tryptophan fluorescence during plasminogen...  相似文献   
2.
Activation of “silent” efferent fibers due to stimulation of the mesenteric nerve within a definite frequency range is described; the effect is supposed to result from sensitization in reflex circles related to visceral pain. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 368–369, July–August, 2006.  相似文献   
3.
Mutations in the human cardiac actin gene (ACTC) have been implicated in the development of hypertrophic or dilated cardiomyopathy in humans. To determine the molecular mechanism for the disease development, a system for the expression of mutant cardiac actin proteins that may be lethal to eukaryotic cells must be developed. Here, we explore some of the advantages and disadvantages of human ACTC expression in yeast and insect cells. We show that human ACTC is incapable of rescuing a yeast endogenous actin (ACT1)-knockout in yeast cells and that coexpression of human ACTC in yeast results in slower growth, making yeast an unsuitable expression system. However, we show that it is possible for yeast cells to express a polymerization-deficient ACTI mutant, thereby allowing us to examine the cell biology of this mutation in the future. Finally, mutant forms of human cardiac actin can be expressed in and purified from insect cells in a properly folded and functional form, permitting important characterization of the biochemical mechanisms responsible for cardiomyopathy development in humans. These studies allow for further research into the biochemical characteristics of previously untenable actin mutant proteins.  相似文献   
4.
The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.  相似文献   
5.
In the present study, expression of T-cadherin was shown to induce intracellular signaling in NIH3T3 fibroblasts: it activated Rac1 and Cdc42 (p < 0.01) but not RhoA. T-Cadherin overexpression in human umbilical vein endothelial cells (HUVEC) using adenoviral constructs induced disassembly of microtubules and polymerization of actin stress fibers, whereas down-regulation of endogenous T-cadherin expression in HUVEC using lentiviral constructs resulted in micro-tubule polymerization and a decrease in the number of actin stress fibers. Moreover, suppression of the T-cadherin expression significantly decreased the endothelial monolayer permeability as compared to the control (p < 0.001).  相似文献   
6.
In the present work, we labeled human epidermal keratinocytes and dermal papilla cells in order to study their behavior after intradermal transplantation. The cells were transduced by lentiviral vectors that bore a marker gene that encodes green fluorescent protein (copGFP) or red fluorescent protein (DsRed). A portion of the transgene expressing cells was evaluated by flow cytometry. The proposed genetic constructions have allowed one to achieve high efficiency (>95%) of the transduction of hair follicle cells. The in vitro transduced cells were injected under epidermis of human skin fragments, after which these fragments were transplanted under the skin of immunodeficient mice. The injected epidermal keratinocytes were found mainly in hair follicles and partially in the zone of interfollicular epidermis, while dermal papilla cells were found in the papilla of the derma. The results of the present study have shown that the chosen genetic constructions obtained based on human immunodeficiency lentivirus are capable of the effective and stable transduction of human skin cells. The injected cells survived and were found in the corresponding skin structures.  相似文献   
7.
Protein folding within the endoplasmic reticulum occurs in conjunction with a complex array of molecular chaperones and folding catalysts that assist the folding process as well as function in quality control processes to monitor the outcome. In this review, we summarize recent advances in the calnexin/calreticulin chaperone system that is directed primarily toward Asn-linked glycoproteins, as well as the protein disulfide isomerase family of enzymes that catalyze disulfide formation, reduction, and isomerization. We highlight issues related to function and substrate specificity as well as the functional interplay between the two systems.  相似文献   
8.
T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions—conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.  相似文献   
9.
Biophysics - Abstract—It has been shown that the curve of the time dependence of tryptophan fluorescence during plasminogen activation by urokinase is well correlated with kinetic curves of...  相似文献   
10.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号