首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  1999年   1篇
  1990年   1篇
  1983年   2篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
2.
3.
The structure and dynamics of a single GM1 (Gal5-β1,3-GalNAc4-β1,4-(NeuAc3-α2,3)-Gal2-β1,4-Glc1-β1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed.  相似文献   
4.
A dataset of experimentally characterized, human Golgi GlyTs with type II membrane topology was created. Based on the experimentally observed acceptor substrate preferences, the GlyTs were classified into five functional categories: biosynthesis of blood group antigens, glycolipids, N-glycans, O-glycans and glycosaminoglycans. The cytoplasmic, transmembrane and stem (CTS) regions were predicted and their length and composition were analyzed. The stem region of GlyTs involved in the biosynthesis of glycolipids and blood group antigens appear to have a shorter stem region compared to those GlyTs which participate in the biosynthesis of N- and O-linked glycans and glycosaminoglycans. The stem regions of all the GlyTs, irrespective of the functional category to which they belong, were found to be rich in disorder-promoting amino acid residues. Thus, the stem region is largely devoid of any regular secondary structure thereby facilitating its tethering role. A higher frequency of occurrence of basic amino acids is observed towards the N-terminus of the transmembrane domain and this is suggested to be important for topogenesis of these enzymes.  相似文献   
5.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   
6.
Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.  相似文献   
7.
The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.  相似文献   
8.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   
9.
The structure and dynamics of a single GM1 (Gal5-beta1,3-GalNAc4-beta1,4-(NeuAc3-alpha2,3)-Gal2-beta1,4-Glc1-beta1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号