首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   11篇
  2023年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1971年   3篇
  1969年   2篇
  1869年   2篇
排序方式: 共有129条查询结果,搜索用时 176 毫秒
1.
In diabetes, certain basement membranes become thicker yet more porous than normal. To identify possible changes in the basement membrane, we have grown the Engelbreth-Holm-Swarm tumor, a tissue that produces quantities of basement membrane in normal mice and in streptozotocin-treated, insulin-deficient, diabetic mice. The level of laminin, a basement membrane-specific glycoprotein, and the level of total protein were slightly elevated in the diabetic tissue. In contrast, the level of the basement membrane specific heparan sulfate proteoglycan was only 20% of control. The synthesis of this proteoglycan was also reduced in the diabetic animals, while the synthesis of other proteoglycans by tissues such as cartilage was normal. The synthesis of the heparan sulfate proteoglycan in diabetic animals was inversely related to plasma glucose levels showing an abrupt decrease above the normal range of plasma glucose. Insulin restored synthesis to normal but this required doses of insulin that maintained plasma glucose at normal levels for several hours. Since the heparan sulfate proteoglycan in the basement membrane restricts passage of proteins, its absence could account for the increased porosity of basement membrane in diabetes. A compensatory synthesis of other components could lead to their increased deposition and the accumulation of basement membrane in diabetes.  相似文献   
2.
Elongation factor G (EF-G) is rapidly inactivated when irradiated at 253.7 nm. The inactivation follows first-order single-hit kinetics with a quantum efficiency of 3.15 × 10?5 μmol/μE. Inclusion of either GTP or GDP in the irradiation mixture does not alter the kinetics of inactivation, but does result in the covalent attachment of nucleotide to between 10 and 20% of the EF-G. This relatively low percentage of cross-linking is due to the rapid rate of photoinactivation as compared to the slower rate of covalent attachment. If EF-G is reacted before irradiation with N-ethylmaleimide, a modification known to block the nucleotide binding site [Rohrbach and Bodley (1976) J. Biol. Chem.251, 930], essentially no nucleotide can be photo-cross-linked to EF-G. Treatment of the photo-cross-linked GTP-EF-G with Raney nickel led to the liberation of the nucleotide moiety, indicating that the photo-cross-link to EF-G occurred through a sulfur atom. Although the formation of the EF-G nucleotide complex has been shown to be an obligatory first step in the formation of the EF-G nucleotide ribosome complex [Rohrbach and Bodley (1976) Biochemistry15, 4565], the covalent EF-G-nucleotide adduct cannot form a ternary complex with the ribosome. The presence of both nucleotide and ribosomes during irradiation drastically alters the kinetics of inactivation. The inactivation under these conditions follows multiple-hit kinetics with an initial period during which no EF-G activity is lost. Following this lag period, EF-G is inactivated at the same rate at which ribosomes lose their ability to bind EF-G. No nucleotide is cross-linked to EF-G or the ribosome under these conditions.  相似文献   
3.
Hairless male mice were given 2 mg Bleomycin i.p. on two successive days. At different time intervals from 1 to 10 days after the last Bleomycin injection, groups of animals were killed and water extracts of hemogenized skin were made. These extracts, supposed to contain the epidermal G1 and G2 chalones, were injected into female hairless mice, and their growth inhibitory potency determined by two methods. 5 mg of lyophilized crude skin extract were injected i.p. together with Colcemid, and the animals killed 4 hr later. The number of Colcemid-arrested mitoses was determined, and was considered to be a measure of the G2 inhibitor present in the skin extracts. 10 mg of the same extracts were injected i.p., and these animals also got 3H-TdR i.p. 12 hr later, and were killed after a subsequent 30 min. The epidermal LI was determined, and was considered to be a measure of the epidermal G1 factor in the skin extracts. The results obtained were compared to the effect of Bleomycin alone and to the effects of skin extracts from non-Bleomycin-treated animals. The results show that Bleomycin provoked slight alterations in the growth-inhibitory potency of the G1 chalone, whereas significant effects were seen in the G2 chalone, There was an increased amount of growth-inhibiting factors on days 2 and 3, and on days 8-10. The results are discussed and it is concluded that the most probable hypothesis is that Bleomycin, in addition to its known inhibition by accumulation of cells with high growth inhibitory potency. An initial, additional direct effect of Bleomycin on the chalone system cammot be excluded.  相似文献   
4.
In this paper we have examined the growth and differentiation of the embryonal carcinoma cell line, F9, in the defined medium EM-3 at low density. We show that the growth of F9 and their differentiated cells (F9-diff) in EM-3 is strongly density dependent. At low cell densities the growth of both cell types is severely limited and most of the cells do not survive. Although this poses a problem for working with F9 and F9-diff in EM-3, it provides a convenient assay for identifying molecules that support their growth at low density. Using this assay, we have determined that laminin, a newly isolated glycoprotein of basement membranes, significantly improves the growth and short-term survival of both F9 and F9-diff. However, addition of laminin to EM-3 is insufficient to promote the clonal growth of these cell types. Our findings also indicate that laminin promotes the attachment of F9 and F9-diff in defined media. On the basis of our results, we propose an attachment function for laminin during the early stages of mammalian development.  相似文献   
5.
Cytoplasmic filaments and cellular wound healing in amoeba proteus   总被引:4,自引:4,他引:0       下载免费PDF全文
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
6.
The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure–activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.  相似文献   
7.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
8.
Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression.  相似文献   
9.
Agonists of the 5-HT2C receptor have been shown to suppress appetite and reduce body weight in animal models as well as in humans. However, agonism of the related 5-HT2B receptor has been associated with valvular heart disease. Synthesis and biological evaluation of a series of novel and highly selective dihydroquinazolinone-derived 5-HT2C agonists with no detectable agonism of the 5-HT2B receptor is described. Among these, compounds (+)-2a and (+)-3c were identified as potent and highly selective agonists which exhibited weight loss in a rat model upon oral dosing.  相似文献   
10.
Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data. Synthesis and biological evaluation of a novel and highly selective radiolabeled CB1 antagonist is described. The radioligand was used to conduct ex vivo receptor occupancy studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号