首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   43篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   9篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   9篇
  1990年   9篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1976年   1篇
排序方式: 共有156条查询结果,搜索用时 46 毫秒
1.
Lysosomal alpha-glucosidase (acid maltase) is essential for degradation of glycogen in lysosomes. Enzyme deficiency results in glycogenosis type II. The amino acid sequence of the entire enzyme was derived from the nucleotide sequence of cloned cDNA. The cDNA comprises 3636 nt, and hybridizes with a messenger RNA of approximately 3.6 kb, which is absent in fibroblasts of two patients with glycogenosis type II. The encoded protein has a molecular mass of 104.645 kd and starts with a signal peptide. Sites of proteolytic processing are established by identification of N-terminal amino acid sequences of the 110-kd precursor, and the 76-kd and 70-kd mature forms of the enzyme encoded by the cDNA. Interestingly, both amino-terminal and carboxy-terminal processing occurs. Sites of sugar-chain attachment are proposed. A remarkable homology is observed between this soluble lysosomal alpha-glucosidase and the membrane-bound intestinal brush border sucrase-isomaltase enzyme complex. It is proposed that these enzymes are derived from the same ancestral gene. Around the putative active site of sucrase and isomaltase, 10 out of 13 amino acids are identical to the corresponding amino acids of lysosomal alpha-glucosidase. This strongly suggests that the aspartic acid residue at this position is essential for catalytic function of lysosomal alpha-glucosidase.  相似文献   
2.
The chromosomal localizations of two closely related human DNA repair genes, HHR6A and HHR6B, were determined by in situ hybridization with biotinylated probes. HHR6A and HHR6B (human homolog of yeast RAD6) encode ubiquitin-conjugating enzymes (E2 enzymes), likely to be involved in postreplication repair and induced mutagenesis. The HHR6B gene was assigned to human chromosome 5q23-q31, whereas the HHR6A gene was localized on the human X chromosome (Xq24-q25). This latter assignment was confirmed with an X-specific human-mouse/hamster somatic cell hybrid panel. Southern blot analysis points to an X and an autosomal localization of HHR6A and HHR6B, respectively, in the mouse. The potential involvement of these genes in human genetic disorders is discussed.  相似文献   
3.
To study the cellular defense mechanism against oxygen toxicity, an oxygen-tolerant cell line from Chinese hamster ovary (CHO) was obtained by multistep adaptation to increased O2 levels. The hyperoxia-adapted (HA) cells were able to proliferate under an atmosphere of 99% O2/1% CO2, an O2 tension lethal to the parental (control) cells. When grown under normoxic conditions (20% O2/1% CO2/79% N2) the cells remained tolerant for at least 8 weeks, suggesting a genetic basis for the oxygen tolerance. Compared to the parental cells, the HA cells were irregularly shaped, had larger mitochondria, contained more lipid droplets and showed a reduced growth rate. Ultrastructural morphometry revealed a 1.8-fold (p less than 0.001) increase of the mitochondrial volume fraction in the HA cells, resulting from an increase in both number and average volume of the mitochondria. The volume fraction of peroxisomes was increased over two-fold in the HA cells, as appeared from a approximately 1.9-fold (p less than 0.001) increase in number and a 1.2-fold (p less than 0.025) increase in size. There was no evidence for ultrastructural damage in the HA cells. Specific activities of antioxygenic enzymes were considerably higher in the HA cells compared to controls: CuZn-superoxide dismutase, X 2.5; Mn-superoxide dismutase, X 2.1; catalase, X 4.0; glutathione peroxidase, X 1.9. Oxygen tolerance in CHO cells is therefore associated with increased levels of antioxygenic enzymes, confirming the proposed important role of these enzymes in the defense against oxygen toxicity.  相似文献   
4.
5.
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited disorder of the optic nerves. It has been proposed that the specific mutations in the mitochondrial DNA (mtDNA) that are associated with LHON require and X-chromosomally encoded permissive factor in order to become expressed. This would explain both the preponderance of male patients and the fact that most carriers of specific mtDNA mutations remain unaffected. Although linkage studies have been negative so far, the existence of such a factor has not been ruled out. We investigated the genealogical data of 24 large LHON pedigrees and concluded that the presumed X-linked factor would be recessively inherited and that at least 57% of the affected females would be heterozygous. Therefore, these females must be the victim of nonrandom X-chromosomal inactivation (skewed lyonization). However, analysis of X-chromosomal methylation patterns in 16 LHON-affected females revealed substantial skewing in only 15%–20% of cases, which is not significantly different from the patterns in 49 controls. Moreover, we found the frequency of LHON in daughters of affected heterozygous females to be twice to three times as high as in daughters of unaffected heterozygous females, which cannot be explained by an X-chromosomally inherited factor. We conclude that the results of our investigations do not support the hypothesis that LHON is a digenic disease with an X-linked factor being the main cause of loss of vision in the presence of relevant mtDNA mutations. Received: 1 June 1995 / Revised: 20 September 1995  相似文献   
6.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   
7.
For many years, the high prevalence of the fragile X syndrome was thought to be caused by a high mutation frequency. The recent isolation of the FMR1 gene and identification of the most prevalent mutation enable a more precise study of the fragile X mutation. As the vast majority of fragile X patients show amplification of an unstable trinucleotide repeat, DNA studies can now trace back the origin of the fragile X mutation. To date, de novo mutations leading to amplification of the CGG repeat have not yet been detected. Recently, linkage disequilibrium was found in the Australian and US populations between the fragile X mutation and adjacent polymorphic markers, suggesting a founder effect of the fragile X mutation. We present here a molecular study of Belgian and Dutch fragile X families. No de novo mutations could be found in 54 of these families. Moreover, we found significant (P < 0.0001) linkage disequilibrium in 68 unrelated fragile X patients between the fragile X mutation and an adjacent polymorphic microsatellite at DXS548. This suggests that a founder effect of the fragile X mutation also exists in the Belgian and Dutch populations. Both the absence of new mutations and the presence of linkage disequilibrium suggest that a few ancestral mutations are responsible for most of the patients with fragile X syndrome.  相似文献   
8.
The fragile X syndrome is a very common disorder, but there has been little progress toward isolating the fragile X mutation (FRAXA). We describe a panel of 14 somatic cell hybrid lines, lymphoblastoid cell lines, and peripheral lymphocytes with X-chromosome translocation or deletion breakpoints near FRAXA. The locations of the breakpoints were defined with 16 established probes between pX45d (DXS100) and St14-1 (DXS52). Seven of the cell lines had breakpoints between the probes RN1 (DXS369) and U6.2 (DXS304), which flank FRAXA at distances of 3-5 centimorgans. The panel of cell lines was used to localize 16 new DNA probes in this region. Six of the probes-VK16, VK18, VK23, VK24, VK37, and VK47--detected loci near FRAXA, and it was possible to order both the X-chromosome breakpoints and the probes in relation to FRAXA. The order of probes and loci near FRAXA is cen-RN1,VK24-VK47-VK23-VK16,FRAXA-++ +VK21A-VK18-IDS-VK37-U6.2-qter. The breakpoints near FRAXA are sufficiently close together that probes localized with this panel can be linked on a large-scale restriction map by pulsed-field gel electrophoresis. This panel of cell lines will be valuable in rapidly localizing other probes near FRAXA.  相似文献   
9.
Involvement of DNA gyrase in the transcription of ribosomal RNA   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号