首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1997年   3篇
  1996年   7篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1971年   1篇
排序方式: 共有94条查询结果,搜索用时 140 毫秒
1.
A recessive mutation causing imperforate vagina in mice   总被引:1,自引:0,他引:1  
A recessive mutation (ipv) causing imperforate vagina was discovered in a line of mice selected for low lean tissue mass as a proportion of body weight. Two full sisters were found to have marked swelling of the perineum and complete closure of the vagina. Crosses of heterozygotes identified by progeny testing produced a female progeny ratio not different from the 3 normal: 1 affected (chi 2 = 0.695; p less than .3) expected on the basis of a recessive allele at a single autosomal locus. As a consequence of the imperforate vagina, the uterus and vagina were greatly distended by fluid. The uterus of affected females displayed a swollen uterine lumen and thin endometrial stroma and muscularis. Ovarian tissue of affected females was similar to that of normal mice, and affected females produced ova that were normal in appearance. The mutation causing an imperforate vagina may present a useful model for studying the basis of abnormal vaginal development in other species and increasing the understanding of normal vaginal development in the mouse.  相似文献   
2.
Organic solvents as facilitators of polymerase chain reaction   总被引:10,自引:0,他引:10  
  相似文献   
3.
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.Resistance (R) proteins play a central role in the recognition-based immune system of plants. Unlike vertebrates, plants lack an adaptive immune system with highly specialized immune cells. Instead, they rely on an innate immune system in which each cell is autonomous. Two types of immune receptors can be distinguished in plants, pathogen-associated molecular patterns recognition receptors that detect conserved molecular patterns in plant pathogens and intracellular R proteins that recognize specific effectors employed by pathogens as modifiers of host metabolism or defense mechanisms (Jones and Dangl, 2006). Effector-triggered activation of R proteins leads to an array of protective responses, often culminating in programmed cell death at the site of infection (Greenberg and Yao, 2004), thereby preventing further ingress of the pathogen. Pathogens have evolved mechanisms to evade recognition by R proteins and to regain their virulence (Dodds and Rathjen, 2010). This continuous coevolutionary process between host and pathogen has resulted in a reservoir of highly diverse R proteins in plants, enabling them to counteract a wide range of pathogens and pests.The most common class of R proteins consists of nucleotide-binding (NB)-leucine-rich repeat (LRR) proteins with a tripartite domain architecture, which roughly corresponds to an N-terminal response domain (a coiled coil [CC] or Toll/Interleukin-1 receptor [TIR] domain) involved in downstream signaling, a central molecular switch domain (the NB domain present in the mammalian apoptosis regulator Apaf1, plant R proteins, and the Caenorhabditis elegans apoptosis regulator CED4 [NB-ARC]), and a C-terminal sensor domain (the LRR domain). The NB-ARC domain is an extended nucleotide-binding domain that plant immune receptors share with metazoan apoptosis regulators and immune receptors such as Apaf1, CED4, and nucleotide-binding oligomerization domain (NOD-like) receptors (NLRs) and belongs to the STAND (signal transduction ATPases with numerous domains) family of nucleoside triphosphatase domains (van der Biezen and Jones, 1998; Leipe et al., 2004; Albrecht and Takken, 2006; Maekawa et al., 2011b). The overall modular architecture of metazoan STAND nucleoside triphosphatase is similar to that of NB-LRR plant immune receptors, but the domains flanking the NB-ARC domain often differ. In NLRs, for example, several N-terminal domains can be found, including caspase-recruiting domains and Pyrin domains (Proell et al., 2008). In the mammalian protein Apaf1, the sensor involved in cytochrome c detection consists of C-terminal WD40 repeats (Zou et al., 1997).In plant NB-LRR resistance proteins, the recognition of a pathogen effector via the LRR domain is thought to switch the conformation of the protein from a closed, autoinhibited “off” state into an open, active “on” state (Lukasik and Takken, 2009). The activation of NB-LRR proteins is most likely a multistep process in which the NB-ARC domain plays a central role. The three subdomains of the NB-ARC, the NB, ARC1, and ARC2, collectively form a nucleotide-binding pocket that adopts different conformations depending on the bound nucleotide. This mechanism seems to be conserved between proteins from organisms as distant as bacteria, metazoans, and plants (Rairdan and Moffett, 2007; Danot et al., 2009; Takken and Tameling, 2009). The conformational change coincides with the exchange of bound ADP for ATP in the NB-ARC, probably stabilizing the active conformation (Tameling et al., 2006; Ade et al., 2007). Hydrolysis of the bound ATP is hypothesized to return the domains to their inactive state. The exact mechanism by which elicitor recognition via the LRR leads to a conformational change of the NB-ARC and the subsequent activation of immune signaling pathways is not clear.Previous studies have shown that the CC/TIR, NB-ARC, and LRR domains in plant immune receptors interact and cooperate with each other in an interdependent manner (Moffett et al., 2002; Leister et al., 2005; Ade et al., 2007; Rairdan et al., 2008). From these data, a picture emerges in which the LRR domain is not only involved in pathogen recognition, but also plays a role in maintaining an autoinhibited resting state in the absence of pathogens via its interactions with the other domains (Bendahmane et al., 2002; Hwang and Williamson, 2003; Ade et al., 2007; Qi et al., 2012). A similar role as regulatory domain has been found for the sensor domains of other NLRs, such as the mammalian Apaf1 (Hu et al., 1998). For the potato (Solanum tuberosum) immune receptor Rx1, a model plant NB-LRR protein, it has been shown that the LRR cooperates with the ARC subdomains in retaining the inactive state of the protein. The deletion of the ARC and LRR domains leads to a constitutive activity of the NB (Bendahmane et al., 2002; Rairdan et al., 2008). In addition, it was demonstrated that the elicitor, the Potato virus X (PVX) coat protein, modifies the interdomain interactions in Rx1 (Moffett et al., 2002; Rairdan et al., 2008). Sequence exchanges between Rx1 and the highly homologous nematode resistance protein Gpa2 (88% amino acid identity) resulted in incompatibilities between the domains that give rise to inappropriate activation of cell death responses (Rairdan and Moffett, 2006), indicating that the cooperation between the sensor and switch domains depends on an interaction fine tuned by intramolecular coevolution. In this light, it is interesting to note that a functional ortholog of Rx1, Rx2 from Solanum acaule, is almost identical to Rx1 in its LRR region but displays a higher similarity to Gpa2 in stretches of its CC-NB-ARC sequence (Bendahmane et al., 2000).The aim of our study was to pinpoint the molecular determinants controlling the switch between the resting and activation state of NB-LRR proteins. The incompatibility between the ARC and LRR domains of Rx1 and Gpa2 was used as a guideline to dissect the molecular and structural determinants involved in the cooperation between the switch (NB-ARC) and sensor (LRR) domain. An extensive exchange of polymorphic residues between these two homologous NB-LRR proteins resulted in the identification of a minimal fragment of 68 amino acid residues in the ARC2 domain and the first LRR repeats as being crucial for proper activation of Gpa2 and Rx1. Within this minimal region, we identified two amino acids that, despite their proximity in the amino acid sequence, differentiate between elicitor-dependent (position 401) and independent activation (position 403). However, structural modeling of the domains shows that the residue at position 403 operates at the interface of the ARC2 and N-terminal part of the LRR domain, while residue 401 mapped at the interface between the ARC2 and NB domain. Furthermore, an acidic loop region in the ARC2 domain and complementary-charged basic patches in the N-terminal half of the LRR domain are shown to be required for the physical interaction between these domains. We demonstrate that the binding between the CC- NB-ARC and LRR domains is disrupted upon elicitor-dependent activation and that the complementary-charged residues are predicted to facilitate reassociation. Two independent docking simulations of the NB-ARC and LRR domain indicate that the LRR domain binds to the NB-ARC domain at the surface formed by the interaction of the ARC2 and NB subdomains. We present a mechanistic model in which the first repeats of the LRR, the ARC2 subdomain, and the NB form a clamp, which governs the shuttling between a closed, autoinhibited “off” state and an open, active “on” state of the resistance protein. Finally, we discuss the consequences of the functional constraints imposed by the interface of the NB, ARC2, and LRR domain for the generation of novel resistance specificities via evolutionary processes and genetic engineering.  相似文献   
4.
5.
6.
Yi N  Banerjee S  Pomp D  Yandell BS 《Genetics》2007,176(3):1855-1864
Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental crosses. We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal probit model (also called threshold model) that assumes a latent continuous trait underlies the generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit model, combined with the composite model space framework for continuous traits, offers a convenient way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F(2) intercross of mice. Utility and flexibility of the method are also demonstrated using a simulated data set. Our method has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits in experimental crosses.  相似文献   
7.
OBJECTIVE: To localize the chromosomal position of a novel cataract mutation (juvenile recessive cataract; jrc) in mice. METHODS: A mapping population was developed by crossing cataract males (albino MH) to wild-type females (black C57BL/6J). F1 females were backcrossed to albino MH males with cataracts. RESULTS: The results were consistent with a model of a single autosomal recessive gene [153 cataract, 169 wild-type; chi2 = 0.8, 1 degree of freedom (d.f.), p > 0.35]. Linkage with the albino (tyrosinase; Tyr) locus was evident (chi2 = 61.5, 1 d.f., p < 0.0001), implicating chromosome 7 as the location of jrc. Recombination percentages (+/- SE) between jrc and D7Mit340 (1.2 cM location), D7Mit227 (16.0 cM) and D7Mit270 (18.0 cM) were 17.1 +/- 2.1, 3.7 +/- 1.1 and 6.2 +/- 1.3%, respectively. Multi-point mapping determined that the most likely order of these loci is D7Mit340 - jrc - D7Mit227 - D7Mit270 - Tyr. Although animals with the mutant phenotype appeared to have little or no sense of sight, their growth was not different (p >0.20) from that of normal mice. CONCLUSION: The jrc mutation model may be useful in the study of the genetics of cataracts in other animal species, including humans.  相似文献   
8.
Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few in vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival fractions of 80% (RT112) and 10% (HX142) after a single dose of 2 Gy and with different halftimes for split-dose recovery and low-dose recovery were used. The cells were irradiated with a continuous low dose rate (80 cGy per hour) or with pulsed dose rate. Two different pulsed dose rates were tested: 4.25 Gy/h and 63 Gy/h. The effects of dose per pulse and the length of the interval between the pulses were investigated while keeping the overall treatment time constant. Survival after low-dose-rate irradiation was indistinguishable from that after pulses of 4.25 Gy/h in cells of both cell lines. Survival decreased with increasing dose per pulse. When the dose rate during the pulses was increased, survival decreased even further. This effect was most pronounced for the radiosensitive HX142 cells. In clinical pulsed-dose-rate brachytherapy, iridium sources move stepwise through the implant and deliver pulses at a high dose rate locally. These high-dose-rate pulses produce greater biological effectiveness compared to continuous low dose rate; this should be taken into account.  相似文献   
9.
Mapping of porcine ESTs obtained from the anterior pituitary   总被引:5,自引:0,他引:5  
  相似文献   
10.
A molecular understanding of porcine reproduction is of biological interest and economic importance. Our Midwest Consortium has produced cDNA libraries containing the majority of genes expressed in major female reproductive tissues, and we have deposited into public databases 21,499 expressed sequence tag (EST) gene sequences from the 3 end of clones from these libraries. These sequences represent 10,574 different genes, based on sequence comparison among these data, and comparison with existing porcine ESTs and genes indicate as many as 4652 of these EST clusters are novel. In silico analysis identified sequences that are expressed in specific pig tissues or organs and confirmed the broad expression in pig for many genes ubiquitously expressed in human tissues. Furthermore, we have developed computer software to identify sequence similarity of these pig genes with their human counterparts, and to extract the mapping information of these human homologues from genome databases. We demonstrate the utility of this software for comparative mapping by localizing 61 genes on the porcine physical map for Chromosomes (Chrs) 5, 10, and 14. The following Accession numbers were assigned to our deposited sequences: BF701840 – BF704551, BF708383, BF708386 – BF713604, BG322266 – BG322271, BI398567 – BI405235, BQ597354 – BQ605166.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号