首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
1.
The 9,10-mono-ozonide of methyl linoleate was shown to be a substrate for rat hepatic cytosolic, rat lung cytosolic and rat hepatic microsomal glutathione S-transferases (GST). The activities of lung cytosol and liver microsomes with methyl linoleate ozonide (MLO) were found to be high relative to the activity demonstrated by liver cytosol, as compared with their respective activities towards 1-chloro-2,4-dinitrobenzene (CDNB). Only a slight catalytic activity towards the ozonide was noticed for rat lung microsomes. Isoenzyme 2-2 exhibited the highest specific activity (208 nmol/min/mg) when isoenzymes 1-1, 1-2, 2-2, 3-3, 3-4, 4-4 and 7-7 were compared. This isoenzyme accounts for approx. 25% of cytosolic GST protein in rat lung, while in rat liver it represents approx. 9%. This may partly explain the high activity towards the ozonide noticed for rat lung cytosol. No stable conjugates were formed as products of the reaction of MLO with glutathione; although two glutathione-conjugates were noticed on TLC, they were only formed as intermediate compounds. Coupling of an aldehyde dehydrogenase assay or a glutathione reductase assay to the GST-catalyzed conjugation, demonstrated that oxidized glutathione and aldehydes are formed as the major products in the reaction. To further confirm the formation of aldehydes, the products of the GST-catalyzed reaction were incubated with 2,4-dinitrophenylhydrazine, which resulted in hydrazone formation. In conclusion, the activity of the GST towards the ozonide of methyl linoleate is similar to their peroxidase activity with lipid hydroperoxides as substrates.  相似文献   
2.
The difference in pentoxyresorufin O-dealkylating activity observed in a reconstituted system containing dilauroylglycerophosphocholine (Lau2GroPCho) or distearoylglycerophosphocholine (Ste2GroPCho) was used as a model to study the role of phospholipids in the reconstituted cytochrome P-450b (IIB1) system. The hypotheses proposed in the literature for the role of phospholipids in the reconstituted cytochrome P-450 system, mainly based on the comparison of systems without phospholipid and with Lau2GroPCho, were either validated or shown to be unlikely when tested by comparing reconstituted systems with different phosphatidylcholines. The higher activity in the Lau2GroPCho system as compared to the Ste2GroPCho system cannot be ascribed to (a) an increased affinity of cytochrome P-450 for the NADPH-cytochrome reductase in the Lau2GroPCho system, also not to (b) a Lau2GroPCho-dependent dissociation of protein multimers, nor to (c) a change in the spin state of the heme. We found a different apparent Km for pentoxyresorufin in the Lau2GroPCho system compared with the Ste2GroPCho system. Furthermore, we found a difference between the cytochrome P-450b tryptophan fluorescence polarization of the Lau2GroPCho system and the Ste2GroPCho system as well as with a system without phosphatidylcholine. From these observations it is concluded that the higher activity of the Lau2GroPCho system compared with the Ste2GroPCho system or with a system without additional phosphatidylcholine may at least in part be caused by a difference in the conformation of the cytochrome P-450 molecules in these systems. Furthermore, the different effects of both phosphatidylcholines on the Km and V for pentoxyresorufin not only suggest a role of phospholipids in the binding of the substrate to the active site of the cytochrome P-450 molecule, but also on the efficiency of electron transfer from NADPH-cytochrome reductase to cytochrome P-450.  相似文献   
3.
 The second-order rate constants for the oxidation of a series of phenol derivatives by horseradish peroxidase compound II were compared to computer-calculated chemical parameters characteristic for this reaction step. The phenol derivatives studied were phenol, 4-chlorophenol, 3-hydroxyphenol, 3-methylphenol, 4-methylphenol, 4-hydroxybenzoate, 4-methoxyphenol and 4-hydroxybenzaldehyde. Assuming a reaction of the phenolic substrates in their non-dissociated, uncharged forms, clear correlations (r = 0.977 and r = 0.905) were obtained between the natural logarithm of the second-order rate constants (ln k app and ln k 2 respectively) for their oxidation by compound II and their calculated ionisation potential, i.e. minus the energy of their highest occupied molecular orbital [E(HOMO)]. In addition to this first approach in which the quantitative structure-activity relationship (QSAR) was based on a calculated frontier orbital parameter of the substrate, in a second and third approach the relative heat of formation (ΔΔHF) calculated for the process of one-electron abstraction and H abstraction from the phenol derivatives was used as a parameter. Plots of the natural logarithms of the second-order rate constants (k app and k 2) for the reaction and the calculated ΔΔHF values for the process of one-electron abstraction also provide clear QSARs with correlation coefficients of –0.968 and –0.926 respectively. Plots of the natural logarithms of the second-order rate constants (k app and k 2) for the reaction and the calculated ΔΔHF values for the process of H abstraction provide QSARs with correlation coefficients of –0.989 and –0.922 respectively. Since both mechanisms considered, i.e. initial electron abstraction versus initial H abstraction, provided clear QSARs, the results could not be used to discriminate between these two possible mechanisms for phenol oxidation by horseradish peroxidase compound II. The computer calculation-based QSARs thus obtained for the oxidation of the various phenol derivatives by compound II from horseradish peroxidase indicate the validity of the approaches investigated, i.e. both the frontier orbital approach and the approach in which the process is described by calculated relative heats of formation. The results also indicate that outcomes from computer calculations on relatively unrelated phenol derivatives can be reliably compared to one another. Furthermore, as the actual oxidation of peroxidase substrates by compound II is known to be the rate-limiting step in the overall catalysis by horseradish peroxidase, the QSARs of the present study may have implications for the differences in the overall rate of substrate oxidation of the phenol derivatives by horseradish peroxidase. Received: 29 March 1996 / Accepted: 17 July 1996  相似文献   
4.
The in vitro and in vivo metabolism of monofluoroanilines was investigated. Special attention was focused on the regioselectivity of the aromatic hydroxylation by cytochromes P-450 and the mechanism by which this reaction might proceed. The results clearly demonstrate that the in vitro and in vivo regioselectivity of the aromatic hydroxylation by cytochromes P-450 is dependent on the fluoro-substituent pattern of the aromatic aniline-ring. Results from experiments with liver microsomes from differently pretreated rats demonstrate that the observed regioselectivity for the aromatic hydroxylation is not predominantly determined by the active site of the cytochromes P-450. To investigate the underlying reason for the observed regioselectivity, semi-empirical molecular orbital calculations were performed. Outcomes of these calculations show that neither the frontier orbital densities of the LUMO/LUMO + 1 (lowest unoccupied molecular orbital) of the monofluoroanilines nor the spin-densities in their NH. radicals can explain the observed regioselectivities. The frontier orbital densities of the HOMO/HOMO - 1 (highest occupied molecular orbital) of the monofluoroanilines however, qualitatively correlate with the regioselectivity of the aromatic hydroxylation. Based on these results it is concluded that the cytochrome P-450 dependent aromatic hydroxylation of monofluoroanilines does not proceed by hydrogen or electron abstraction from the aniline substrate to give an aniline-NH. radical. The results rather suggest that cytochrome P-450 catalyzed aromatic hydroxylation of monofluoroanilines proceeds by an electrophilic attack of the (FeO)3+ species of cytochrome P-450 on a specific carbon atom of the aromatic aniline-ring.  相似文献   
5.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
6.
For the first time saturating overall k(cat) values for horseradish peroxidase (HRP) catalysed conversion of phenols and anilines are described. These k(cat) values correlate quantitatively with calculated ionisation potentials of the substrates. The correlations for the phenols are shifted to higher k(cat) values at similar ionisation potentials as compared to those for anilines. (1)H-NMR T(1) relaxation studies, using 3-methylphenol and 3-methylaniline as the model substrates, revealed smaller average distances of the phenol than of the aniline protons to the paramagnetic Fe(3+) centre in HRP. This observation, together with a possibly higher extent of deprotonation of the phenols than of the anilines upon binding to the active site of HRP, may contribute to the relatively higher HRP catalysed conversion rates of phenols than of anilines.  相似文献   
7.
Quantitative structure activity relationships (QSARs) are described for the antioxidant activity of series of all-trans carotenoids. The antioxidant activity of the carotenoids is characterised by literature data for (i) their relative ability to scavenge the ABTS·+ radical cation, reflected by the so-called trolox equivalent antioxidant capacity (TEAC) value, (ii) their relative rate of oxidation by a range of free radicals, or (iii) their capacity to inhibit lipid peroxidation in multilamellar liposomes, leading to a decrease in formation of thiobarbituric acid reactive substances (TBARS). All these antioxidant values for radical scavenging action correlate quantitatively with computer-calculated ionisation potentials of the carotenoids. These correlations are observed both when the ionisation potential is calculated as the negative of the energy of the highest occupied molecular orbital (-E(HOMO)) of the molecule, or as the relative change in heat of formation (ΔΔHF) upon the one-electron oxidation of the carotenoids.

The calculations provide a theoretical assay able to characterise the intrinsic electron donating capacity of an antioxidant, in hydrophilic, hydrophobic or artificial membrane environment.  相似文献   
8.
The influence of pH, intrinsic electron donating capacity, and intrinsic hydrogen atom donating capacity on the antioxidant potential of series of hydroxy and fluorine substituted 4-hydroxybenzoates was investigated experimentally and also on the basis of computer calculations. The pH-dependent behavior of the compounds in the TEAC assay revealed different antioxidant behavior of the nondissociated monoanionic form and the deprotonated dianionic form of the 4-hydroxybenzoates. Upon deprotonation the radical scavenging ability of the 4-hydroxybenzoates increases significantly. For mechanistic comparison a series of fluorobenzoates was synthesized and included in the studies. The fluorine substituents were shown to affect the proton and electron donating abilities of 4-hydroxybenzoate in the same way as hydroxyl substituents. In contrast, the fluorine substituents influenced the TEAC value and the hydrogen atom donating capacity of 4-hydroxybenzoate in a way different from the hydroxyl moieties. Comparison of these experimental data to computer-calculated characteristics indicates that the antioxidant behavior of the monoanionic forms of the 4-hydroxybenzoates is not determined by the tendency of the molecule to donate an electron, but by its ability to donate a hydrogen atom. Altogether, the results explain qualitatively and quantitatively how the number and position of OH moieties affect the antioxidant behavior of 4-hydroxybenzoates.  相似文献   
9.
Of all NMR-observable isotopes 19F is the one most convenient for studies on the biodegradation of environmental pollutants and especially for fast initial metabolic screening of newly isolated organisms. In the past decade we have identified the 19F NMR characteristics of many fluorinated intermediates in the microbial degradation of fluoroaromatics including especially fluorophenols. In the present paper we give an overview of results obtained for the initial steps in the aerobic microbial degradation of fluorophenols, i.e. the aromatic hydroxylation to di-, tri- or even tetrahydroxybenzenes ultimately suitable as substrates for the second step, ring cleavage by dioxygenases. In addition we present new results from studies on the identification of metabolites resulting from reaction steps following aromatic ring cleavage, i.e. resulting from the conversion of fluoromuconates by chloromuconate cycloisomerase. Together the presented data illustrate the potential of the 19F NMR technique for (1) fast initial screening of biodegradative pathways, i.e. for studies on metabolomics in newly isolated microorganisms, and (2) identification of relatively unstable pathway intermediates like fluoromuconolactones and fluoromaleylacetates. Journal of Industrial Microbiology & Biotechnology (2001) 26, 22–34. Received 20 April 2000/ Accepted in revised form 22 May 2000  相似文献   
10.
The effect of the pH on antioxidant properties of a series of hydroxyflavones was investigated. The pKa of the individual hydroxyl moieties in the hydroxyflavones was compared to computer-calculated deprotonation energies. This resulted in a quantitative structure activity relationship (QSAR), which enables the estimation of pKa values of individual hydroxyl moieties, also in hydroxyflavones for which these pKa values are not available. Comparison of the pKa values to the pH-dependent antioxidant profiles, determined by the TEAC assay, reveals that for various hydroxyflavones the pH-dependent behavior is related to hydroxyl moiety deprotonation, resulting in an increase of the antioxidant potential upon formation of the deprotonated forms. Comparison of these experimental results to computer calculated O-H bond dissociation energies (BDE) and ionization potentials (IP) of the nondeprotonated and the deprotonated forms of the various hydroxyflavones indicates that especially the parameter reflecting the ease of electron donation, i.e., the IP, and not the BDE, is greatly influenced by the deprotonation. Based on these results it is concluded that upon deprotonation the TEAC value increases (radical scavenging capacity increases) because electron-, not H*-, donation becomes easier. Taking into account that the mechanism of radical scavenging antioxidant activity of the neutral form of the hydroxyflavones is generally considered to be hydrogen atom donation, this implies than not only the ease of radical scavenging, but also the mechanism of antioxidant action changes upon hydroxyflavone deprotonation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号