首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2022年   2篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
2.
Xu  Zhenzhen  Jiang  Jianxiang  Xu  Shengyuan  Xie  Zunchun  He  Pei  Jiang  Shishi  Xu  Renshi 《Cellular and molecular neurobiology》2022,42(4):1035-1046

Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn’t been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.

  相似文献   
3.
Although lots of genes have been revealed to relate to sporadic amyotrophic lateral sclerosis (sALS), its genetic mechanisms still need to be further explored. We aimed to search the novel genetic factors of sALS and assess their contribution. We constructed an integrative dataset based on the 3227 subsignificant genes (P value?<?0.01) from two sALS-related genome-wide association studies (GWAS) (the US and Irish studies). A significant replication between both studies was confirmed by the gene set enrichment analysis in the integral level (P value?<?10?4). Using the pathway overrepresentation analysis, we revealed the 34 shared Gene Ontology (GO) biological processes from the two independent studies (P value?<?0.01). Among these pathways, the nervous system developmental pathway (NSD function, GO:0007399) was further supported by the previously reported genes related to sALS (P value?=?3.28e?12). Importantly, four of 17 NSD-function-related target genes (disrupted-in-schizophrenia-1 (DISC1), CNTN4, NRXN3, and ERBB4) presented a considerable association with sALS in both studies. To further verify the association between the NSD function target genes and sALS, we preformed a two-stage case–control study based on 500 sALS patients and 500 controls of Chinese Han populations from mainland. A polymorphism of rs3737597 in DISC1 gene involved in the nervous system developmental pathway was closely associated with sALS. The nervous system developmental pathway is a potential pathogenesis of sALS, among them, the polymorphism of rs3737597 in DISC1 might play some roles.  相似文献   
4.
5.
Pulmonary fibrosis (PF) is a chronic obstructive pulmonary disease without effective clinical drug treatment. Qing‐Xuan Granule (QX) as a traditional Chinese patent medicine is clinically used to cure children's cough. This study was designed to investigate the effects of QX and possible molecular mechanisms for bleomycin‐induced PF. The work used Western blotting and Q‐PCR to explore the vitro and vivo mechanisms of QX treatment, while using HPLC‐TOF/MS to explore the composition of QX. QX was given daily orally for two weeks after bleomycin intratracheal instillation. The protective effects of QX on lung function, inflammation, growth factors, hydroxyproline content and deposition of extracellular matrix were investigated. QX decreased expression of Col I and α‐SMA in lung tissues by down‐regulating TGF‐β1‐Smad2/3 signaling and suppressed epithelial‐mesenchymal transition and effectively reversed abnormal mRNA levels of MMP‐1and TIMP‐1 as well as LOXL‐2 in lung tissues. HPLC‐TOF/MS indicate that six substances could be the main active components, which were reported to protect against experimental lung disease.  相似文献   
6.
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号