首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1992年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Much information has appeared in the last few years on the low resolution structure of amyloid fibrils and on their non-fibrillar precursors formed by a number of proteins and peptides associated with amyloid diseases. The fine structure and the dynamics of the process leading misfolded molecules to aggregate into amyloid assemblies are far from being fully understood. Evidence has been provided in the last five years that protein aggregation and aggregate toxicity are rather generic processes, possibly affecting all polypeptide chains under suitable experimental conditions. This evidence extends the number of model proteins one can investigate to assess the molecular bases and general features of protein aggregation and aggregate toxicity. We have used tapping mode atomic force microscopy to investigate the morphological features of the pre-fibrillar aggregates and of the mature fibrils produced by the aggregation of the hydrogenase maturation factor HypF N-terminal domain (HypF-N), a protein not associated to any amyloid disease. We have also studied the aggregate-induced permeabilization of liposomes by fluorescence techniques. Our results show that HypF-N aggregation follows a hierarchical path whereby initial globules assemble into crescents; these generate large rings, which evolve into ribbons, further organizing into differently supercoiled fibrils. The early pre-fibrillar aggregates were shown to be able to permeabilize synthetic phospholipid membranes, thus showing that this disease-unrelated protein displays the same amyloidogenic behaviour found for the aggregates of most pathological proteins and peptides. These data complement previously reported findings, and support the idea that protein aggregation, aggregate structure and toxicity are generic properties of polypeptide chains.  相似文献   
2.
We used tapping mode atomic force microscopy to study the morphology of the amyloid protofibrils formed at fixed conditions (low pH with high ionic strength) by self-assembly of the N-terminal domain of the hydrogenase maturation factor HypF. Although all protofibrils in the sample share a beaded structure and similar values of height and width, an accurate analysis of contour length and end-to-end distance and the comparison of experimental data with theoretical predictions based on the worm-like chain model show that two different populations of protofibrils are present. These populations are characterized by different physical properties, such as persistence length, bending rigidity and Young's modulus. Fluorescence quenching measurements on earlier globular intermediates provide an independent evidence of the existence of different populations. The finding that differences in mechanical properties exist even within the same sample of protofibrils indicates the presence of different subpopulations of prefibrillar aggregates with potentially diverse tendencies to react with undesired molecular targets. This study describes a strategy to discriminate between such different subpopulations that are otherwise difficult to identify with conventional analyses.  相似文献   
3.
The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils.  相似文献   
4.
The discovery of methods suitable for the conversion in vitro of native proteins into amyloid fibrils has shed light on the molecular basis of amyloidosis and has provided fundamental tools for drug discovery. We have studied the capacity of a small library of tetracycline analogues to modulate the formation or destructuration of β2-microglobulin fibrils. The inhibition of fibrillogenesis of the wild type protein was first established in the presence of 20% trifluoroethanol and confirmed under a more physiologic environment including heparin and collagen. The latter conditions were also used to study the highly amyloidogenic variant, P32G. The NMR analysis showed that doxycycline inhibits β2-microglobulin self-association and stabilizes the native-like species through fast exchange interactions involving specific regions of the protein. Cell viability assays demonstrated that the drug abolishes the natural cytotoxic activity of soluble β2-microglobulin, further strengthening a possible in vivo therapeutic exploitation of this drug. Doxycycline can disassemble preformed fibrils, but the IC(50) is 5-fold higher than that necessary for the inhibition of fibrillogenesis. Fibril destructuration is a dynamic and time-dependent process characterized by the early formation of cytotoxic protein aggregates that, in a few hours, convert into non-toxic insoluble material. The efficacy of doxycycline as a drug against dialysis-related amyloidosis would benefit from the ability of the drug to accumulate just in the skeletal system where amyloid is formed. In these tissues, the doxycycline concentration reaches values several folds higher than those resulting in inhibition of amyloidogenesis and amyloid destructuration in vitro.  相似文献   
5.
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.  相似文献   
6.
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.  相似文献   
7.
8.
Dialysis-related amyloidosis is characterized by the deposition of insoluble fibrils of beta(2)-microglobulin (beta(2)-m) in the musculoskeletal system. Atomic force microscopy inspection of ex vivo amyloid material reveals the presence of bundles of fibrils often associated to collagen fibrils. Aggregation experiments were undertaken in vitro with the aim of reproducing the physiopathological fibrillation process. To this purpose, atomic force microscopy, fluorescence techniques, and NMR were employed. We found that in temperature and pH conditions similar to those occurring in periarticular tissues in the presence of flogistic processes, beta(2)-m fibrillogenesis takes place in the presence of fibrillar collagen, whereas no fibrils are obtained without collagen. Moreover, the morphology of beta(2)-m fibrils obtained in vitro in the presence of collagen is extremely similar to that observed in the ex vivo sample. This result indicates that collagen plays a crucial role in beta(2)-m amyloid deposition under physiopathological conditions and suggests an explanation for the strict specificity of dialysis-related amyloidosis for the tissues of the skeletal system. We hypothesize that positively charged regions along the collagen fiber could play a direct role in beta(2)-m fibrillogenesis. This hypothesis is sustained by aggregation experiments performed by replacing collagen with a poly-L-lysine-coated mica surface. As shown by NMR measurements, no similar process occurs when poly-L-lysine is dissolved in solution with beta(2)-m. Overall, the findings are consistent with the estimates resulting from a simplified collagen model whereby electrostatic effects can lead to high local concentrations of oppositely charged species, such as beta(2)-m, that decay on moving away from the fiber surface.  相似文献   
9.
Recent data depict membranes as the main sites where proteins/peptides are recruited and concentrated, misfold, and nucleate amyloids; at the same time, membranes are considered key triggers of amyloid toxicity. The N-terminal domain of the prokaryotic hydrogenase maturation factor HypF (HypF-N) in 30% trifluoroethanol undergoes a complex path of fibrillation starting with initial 2-3-nm oligomers and culminating with the appearance of mature fibrils. Oligomers are highly cytotoxic and permeabilize lipid membranes, both biological and synthetic. In this article, we report an in-depth study aimed at providing information on the surface activity of HypF-N and its interaction with synthetic membranes of different lipid composition, either in the native conformation or as amyloid oligomers or fibrils. Like other amyloidogenic peptides, the natively folded HypF-N forms stable films at the air/water interface and inserts into synthetic phospholipid bilayers with efficiencies depending on the type of phospholipid. In addition, HypF-N prefibrillar aggregates interact with, insert into, and disassemble supported phospholipid bilayers similarly to other amyloidogenic peptides. These results support the idea that, at least in most cases, early amyloid aggregates of different peptides and proteins produce similar effects on the integrity of membrane assembly and hence on cell viability.  相似文献   
10.
In amyloidosis associated with apolipoprotein A-I (ApoA-I), heart amyloid deposits are mainly constituted by the 93-residue ApoA-I N-terminal region. A recombinant form of the amyloidogenic polypeptide, named [1-93]ApoA-I, shares conformational properties and aggregation propensity with its natural counterpart. The polypeptide, predominantly in a random coil state at pH 8.0, following acidification to pH 4.0 adopts a helical/molten globule transient state, which leads to formation of aggregates. Here we provide evidence that fibrillogenesis occurs also in physiologic-like conditions. At pH 6.4, [1-93]ApoA-I was found to assume predominantly an α-helical state, which undergoes aggregation at 37°C over time at a lower rate than at pH 4.0. After 7 days at pH 6.4, protofibrils were observed by atomic force microscopy (AFM). Using a multidisciplinary approach, including circular dichroism (CD), fluorescence, electrophoretic, and AFM analyses, we investigated the effects of a lipid environment on the conformational state and aggregation propensity of [1-93]ApoA-I. Following addition of the lipid-mimicking detergent Triton X-100, the polypeptide was found to be in a helical state at both pH 8.0 and 6.4, with no conformational transition occurring upon acidification. These helical conformers are stable and do not generate aggregated species, as observed by AFM after 21 days. Similarly, analyses of the effects of cholesterol demonstrated that this natural ApoA-I ligand induces formation of α-helix at physiological concentrations at both pH 8.0 and 6.4. Zwitterionic, positively charged, and negatively charged liposomes were found to affect [1-93]ApoA-I conformation, inducing helical species. Our data support the idea that lipids play a key role in [1-93]ApoA-I aggregation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号