首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   3篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
  1994年   1篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有40条查询结果,搜索用时 17 毫秒
1.
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn–turn and phosphate–nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic ‘crab-claw’ movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin ‘native state.’ Implications for docking protocols are derived.  相似文献   
2.
In the present study the effects of collagen on platelet aggregation and arachidonic acid (AA) mobilization, specifically from phosphatidylcholine (PC), were investigated in the presence and absence of BW755C, a selective inhibitor of cyclo-oxygenase and lipoxygenases. The inhibition of cyclo-oxygenase and lipoxygenase(s) by BW755C (75 microM) resulted in severe impairment in collagen-induced platelet aggregation. In the presence of BW755C, the aggregation response amounted to 14, 26, 37 and 49% of the corresponding controls (without BW755C) at 10, 25, 50 and 100 micrograms of collagen respectively. On the contrary, the amount of AA released from PC, which ranged from 3.5 to 8.6 nmol/10(9) platelets, in response to the action of collagen (10-100 micrograms) remained unaffected by the presence of BW755C. Substantial amounts of non-esterified AA were detected in the free fatty acid fractions obtained from collagen-stimulated platelets in the presence as well as in the absence of BW755C. However, the presence of BW755C caused a greater accumulation of free AA (mass) and this ranged from 4 to 16 nmol, depending upon the amount of collagen. In addition, small increases in free stearic and oleic acids were observed in collagen-stimulated platelets as compared with unstimulated platelets. The amount of AA lost from PC represented 67, 80, 49 and 52% of the free AA obtained at 10, 25, 50 and 100 micrograms of collagen respectively. Our results adhesion of platelets to collagen fibres may be responsible for much of the AA release from PC Furthermore, these results demonstrate that aggregation and/or cyclo-oxygenase/lipoxygenase metabolites are not obligatory for the release of AA from PC in collagen-stimulated human platelets.  相似文献   
3.
This present report describes the effect of H-7, a protein kinase C inhibitor, on the release of oleic, linoleic and arachidonic acids in A23187-stimulated neutrophils. Surprisingly, the inhibitor potentiated the release of all three unsaturated fatty acids in neutrophils stimulated with A23187 alone. In contrast, released oleic acid, linoleic acid and arachidonic acid in phorbol 12-myristate 13-acetate-primed neutrophils were attenuated by 35, 47 and 33%, respectively, in the presence of H-7 (300 microM). Phorbol 12-myristate 13-acetate (PMA) had no effect on A23187-stimulated release of saturated fatty acids. Both PMA and H-7 when used alone had no effect on the release of saturated or unsaturated fatty acids. We, therefore, conclude that H-7 may have effects other than inhibiting PMA-primed responses including superoxide generation, degranulation and arachidonic acid release in human neutrophils.  相似文献   
4.
Reactive oxygen species (ROS) are capable of inducing cell death or apoptosis. Recently, we demonstrated that lipid-ROS can mediate ferroptosis and activation of human platelets. Ferroptosis is an intracellular iron-mediated cell death, distinct from classical apoptosis and necrosis, which is mediated through the accumulation of ROS, lipid peroxides and depletion of cellular GSH. Lately, we demonstrated that hemoglobin degradation product hemin induces ferroptosis in platelets via ROS and lipid peroxidation. In this study, we demonstrate that hemin-induced ferroptosis in platelets is mediated through ROS-driven proteasome activity and inflammasome activation, which were mitigated by Melatonin (MLT). Although inflammasome activation is linked with pyroptosis, it is still not clear whether ferroptosis is associated with inflammasome activation. Our study for the first time demonstrates an association of platelet activation/ferroptosis with proteasome activity and inflammasome activation. Although, high-throughput screening has recognized ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent ferroptosis inhibitors, having an endogenous antioxidant such as MLT as ferroptosis inhibitor is of high interest. MLT is a well-known chronobiotic hormone that regulates the circadian rhythms in vertebrates. It also exhibits potent antioxidant and ROS quenching capabilities. MLT can regulate fundamental cellular functions by exhibiting cytoprotective, oncostatic, antiaging, anti-venom, and immunomodulatory activities. The ROS scavenging capacity of MLT is key for its cytoprotective and anti-apoptotic properties. Considering the anti-ferroptotic and anti-apoptotic potentials of MLT, it could be a promising clinical application to treat hemolytic, thrombotic and thrombocytopenic conditions. Therefore, we propose MLT as a pharmacological and therapeutic agent to inhibit ferroptosis and platelet activation.  相似文献   
5.
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.  相似文献   
6.
ObjectiveTo investigate the effects of functional electrical stimulation (FES) combined with conventional rehabilitation program on the effort and speed of walking, the surface electromyographic (sEMG) activity and metabolic responses in the management of drop foot in stroke subjects.MethodsFifteen patients with a drop foot resulting from stroke at least 3 months prior to the start of the trial took part in this study. All subjects were treated 1 h a day, 5 days a week, for 12 weeks, including conventional stroke rehabilitation program and received 30 min of FES to the tibialis anterior (TA) muscle of the paretic leg in clinical settings. Baseline and post-treatment measurements were made for temporal and spectral EMG parameters of TA muscle, walking speed, the effort of walking as measured by physiological cost index (PCI) and metabolic responses.ResultsThe experimental results showed a significant improvement in mean-absolute-value (21.7%), root-mean-square (66.3%) and median frequency (10.6%) of TA muscle EMG signal, which reflects increased muscle strength. Mean increase in walking speed was 38.7%, and a reduction in PCI of 34.6% between the beginning and at end of the trial. Improvements were also found in cardiorespiratory responses with reduction in oxygen consumption (24.3%), carbon dioxide production (19.9%), heart rate (7.8%) and energy cost (22.5%) while walking with FES device.ConclusionsThe results indicate that the FES may be a useful therapeutic tool combined with conventional rehabilitation program to improve the muscle strength, walking ability and metabolic responses in the management of drop foot with stroke patients.  相似文献   
7.
The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler''s diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were Km(NAD+) = 6 μm, Km(actin) = 24 μm, and kcat = 22 s−1. VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC50 = 20 μm). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.  相似文献   
8.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   
9.
How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this “conveyor belt” towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.  相似文献   
10.
The 15-hydroperoxyeicosatetraenoic acid (15-HPETE) has been shown to affect platelet aggregation induced by collagen, arachidonic acid (AA), and PGH2-analogue. Furthermore, it also inhibits the platelet cyclooxygenase and lipoxygenase enzymes, and prostacyclin synthase. The present study was designed to test the effect of 15-HPETE on the mobilization of endogenous AA in collagen-stimulated human platelets. For this purpose, human platelets pretreated with BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase) were stimulated with collagen in the presence of varied concentrations of 15-HPETE. We observed a significant inhibition of oxygenases at all concentrations of 15-HPETE. In contrast, our results indicate that 15-HPETE at lower concentrations (10 microM and 30 microM) significantly stimulated the collagen-induced release of AA from phospholipid sources. Although higher concentrations of 15-HPETE (50 microM and 100 microM) caused some inhibition of AA accumulation in the free fatty acid fraction (25% and 60%), the degree of inhibition was significantly lower than the inhibition observed for the oxygenases (65% and 88% for cyclooxygenase and 77% and 94% for lipoxygenase respectively). These results provide support that hydroperoxides also regulate phospholipases presumably by a different mechanism, which may be important in the detoxification of phospholipid peroxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号