首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Abstract

The interaction ability of bovine serum albumin (BSA) with 2,6-divanillylidenecyclohexanone (DVH) as a stable curcumin derivative was investigated using fluorescence and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH = 7.2). Following the obtained results of binding studies, bovine serum albumin nanoparticles (BSANPs) were synthesized and characterized using Fourier transform infrared spectroscopy (FT-IR), filed emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM) and dynamic light scattering (DLS). The stable BSANPs showed a spherical shape with a diameter of 149.14?±?46.69?nm and the formulation of BSA had no change during the fabrication process. DVH was loaded on BSANPs (DVH@BSANPs) and the release studies showed sustained release of DVH from BSANPs. The validation of DVH@BSANPs system confirmed that the Fickian release mechanism of DVH followed on Korsmeyer–Pepas model. The in vitro studies on HFFF2 and MDA-MB-231 were investigated using MTT assay, DAPI and annexinV/PI staining that showed biocompatible BSANPs reduced the cytotoxicity of DVH in normal cell lines significantly, and antitumor activity of DVH was increased when it was loaded onto BSANPs without necrosis. These results suggest that DVH@BSANPs are a novel biocompatible sustained release system for effective therapeutic approach.

Communicated by Ramaswamy H. Sarma  相似文献   
2.
Molecular Biology Reports - Soil drought stress is a limiting factor of productivity in walnut (Juglans regia L). Ferredoxin (Fd) level decreases under adverse environmental stress. Functional...  相似文献   
3.
Protein aggregation is a pathological hallmark of several human disorders, and a central problem in biotechnology, occurring during purification, sterilization, shipping and storage of protein structures. The process is a very complex one, characterized with a remarkable polymorphism of aggregates, including soluble amyloid oligomers, amyloid fibrils and amorphous species. While amyloid structure formation has been extensively investigated during the recent years, amorphous aggregation is still not well characterized. Use of small molecules that affect this process could be informative in this regard. In order to explore the inhibiting effect of small molecules on the amorphous aggregate formation, yeast hexokinase-B, a key enzyme in metabolism, has been chosen for the present study. Thermal aggregation of the enzyme was investigated in 50 mM phosphate buffer, pH 7 at 55°C and the extent of aggregation was measured by monitoring the increase in absorbance at 350 nm versus time. Possible anti-aggregation effects of a variety of non-specific ligands including indole, tryptophan, carbinol, and indomethacin were explored. Turbidity of the protein solutions was found to be diminished by the presence of these small molecules in the above conditions, with the highest effects being exerted by indomethacin. Dynamic light scattering and HPLC confirmed that indomethacin had the highest anti-aggregation effect. These observations, taken together, suggest that the indole ring is likely to play an important role in aggregation inhibition.  相似文献   
4.
We have recently reported that electrostatic interactions may play a critical role in alcohol-induced aggregation of alpha-chymotrypsin (CT). In the present study, we have investigated the heat-induced aggregation of this protein. Thermal aggregation of CT obeyed a characteristic pattern, with a clear lag phase followed by a sharp rise in turbidity. Intrinsic and ANS fluorescence studies, together with fluorescence quenching by acrylamide, suggested that the hydrophobic patches are more exposed in the denatured conformation. Typical chaperone-like proteins, including alpha- and beta-caseins and alpha-crystalline could inhibit thermal aggregation of CT, and their inhibitory effect was nearly pH-independent (within the pH range of 7-9). This was partially counteracted by alpha-, beta- and especially gamma-cyclodextrins, suggesting that hydrophobic interactions may play a major role. Loss of thermal aggregation at extreme acidic and basic conditions, combined with changes in net charge/pH profile of aggregation upon chemical modification of lysine residues are taken to support concomitant involvement of electrostatic interactions.  相似文献   
5.
Formation of protein amyloid fibrils consists of a series of intermediates including oligomeric aggregates, proto-fibrillar structures, and finally mature fibrils. Recent studies show higher toxicity for oligomeric and proto-fibrillar intermediates of protein relative to their mature fibrils. Here the kinetic of the insulin amyloid fibrillation was evaluated using a variety of techniques including ThT fluorescence, Congo red absorbance, circular dichroism, and atomic force microscopy (AFM). The solution surface tension changes were attributed to hydrophobic changes in insulin structure and were detected by Du Noüy Ring method. Determination of the surface tension of insulin oligomeric, proto-fibrillar and fibrillar forms indicated that the hydrophobicity of solution is enhanced by the formation of the oligomeric forms of insulin compared to other forms. In order to investigate the toxicity of the different forms of insulin we monitored morphological alterations of the differentiated neuron-like PC12 cells following incubation with native, oligomeric aggregates, proto-fibrillar, and fibrillar forms of insulin. The cell body area, average neurite length, neurite width, number of primary neurites, and percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different forms of insulin. We observed that the oligomeric form of insulin impaired the growth and complexity of PC12 cells compared to other forms. Together our data suggest that the lower surface tension of oligomers and their perturbation affects the morphology of PC12 cells, mainly due to their enhanced hydrophobicity and detergent-like structures.  相似文献   
6.
Rapeseed (Brassica napus L.) is important for edible oil production in semi-arid areas. Abiotic stresses are threatening rapeseed production in such areas. This study was conducted to find tolerant genotypes of rapeseed and to determine which traits of crop establishment is related to abiotic stress tolerance. Hydrotime model parameters were determined in a laboratory germination test, and seedling emergence and growth were evaluated in pot experiments under control, drought, salinity, deep sowing, low and high temperatures for 19 rapeseed genotypes. Results indicated that the predicted germination time courses at the various water potentials generally fitted well with the observed germination data. The estimated values of θ H, ψb(50), and σψb differed significantly across genotypes. Seedling emergence and growth differed significantly under each environmental condition. PCA showed that genotypes of Hayola 401 and line 285 were the most tolerant to abiotic stresses during crop establishment and seedling growth. The first PC explained 40% of variations, and a correlation was observed between PC1 and ψb(50). Correlations among hydrotime model parameters and early seed vigour variables indicated that ψb(50) negatively correlated with seedling emergence percentage and rate (day?1) under all abiotic stresses. It shows that genotypes with more negative values of ψb(50) have more seedling emergence percentage and a larger seedling emergence rate (days?1) under a wide range of environmental conditions. Thus, it can be concluded that, to identify tolerant genotypes of rapesee to abiotic stresses, ψb(50) is a good trait and that breeders can focus on reducing ψb(50) to increase tolerance of abiotic stresses.  相似文献   
7.
Yeast hexokinase has been poorly characterized in regard with its stability. In the present study, various spectroscopic techniques were employed to investigate thermal stability of the monomeric form of yeast hexokinase B (YHB). The enzyme underwent a conformational transition with a T(m) of about 41.9 degrees C. The structural transition proved to be significantly reversible below 55 degrees C and irreversible at higher temperatures. Thermoinactivation studies revealed that enzymatic activity diminished significantly at high temperatures, with greater loss of activity observed above 55 degrees C. Release of ammonia upon deamidation of YHB obeyed a similar temperature-dependence pattern. Dynamic light scattering and size exclusion-HPLC indicated formation of stable aggregates. Taking various findings on the influence of osmolytes and chaperone-like agents on YHB thermal denaturation together, it is proposed that the purely conformational transition of YHB is reversible, and irreversibility is due to aggregation, as a major cause. Deamidation of a critical Asn or Gln residue(s) may also play an important role.  相似文献   
8.
A primary concern of modern plant breeding is that genetic diversity has decreased during the past century. This study set out to explore changes in genetic variation during 84 years of breeding by investigating the germination-related traits, inter-simple sequence repeat (ISSR) fingerprinting and osmotic stress tolerance of 30 Iranian wheat (Triticum aestivum L.) cultivars. Seeds were planted under control and osmotic stress (?2, ?4 and ?6 bar) in three replications. The ISSR experiment was carried out using 32 different primers. Genotypes were divided into two groups (old and new) each containing 15 members. The results of ANOVA showed that highly significant differences existed among genotypes and among growth conditions. The results showed that during breeding in some traits such as coleoptile length and seedling vigor index, a significant decrease has been occurred. New cultivars had a mean coleoptile length of 33 mm, shorter than that of old cultivars (42 mm) under osmotic stress of ?6 bar. Genetic variance of root length, shoot length and seedling vigor index for old cultivars were 1.59, 1.93 and 45,763, respectively, significantly higher than those for new cultivars (0.55, 1.08 and 27,996, respectively). This difference was also verified by ISSR results as the polymorphism information content was 0.28 in old cultivars, higher than that of new cultivars (0.26). These results prove this claim that during breeding, genetic diversity has decreased for many germination-related traits and breeders are better to pay more attention to genetic diversity.  相似文献   
9.
Esophageal squamous cell carcinoma (ESCC) is among the leading causes of cancer related death. Despite of extensive efforts in identifying valid cancer prognostic biomarkers, only a very small number of markers have been identified. Several genetic variants in the 9p21 region have been identified that are associated with the risk of multiple cancers. Here, we explored the association of two genetic variants in the 9p21 region, CDKN2A/B, rs10811661, and rs1333049 for the first time in 273 subjects with, or without ESCC. We observed that the patients with ESCC had a higher frequency of a TT genotype for rs10811661 than individuals in the control group, and this polymorphism was also associated with tumor size. Moreover, a CC genotype for the rs1333049 polymorphism was associated with a reduced overall survival (OS) of patients with ESCC. In particular, patients with a CC (rs1333049) genotype had a significantly shorter OS (CC genotype: 34.5 ± 8.9 months vs. CG+GG: 47.7 ± 5.9 months; p value = 0.03). We have also shown the association of a novel genetic variant in CDKN2B gene with clinical outcome of patients with ESCC. Further investigations are warranted in a larger population to explore the value of emerging markers as a risk stratification marker in ESCC.  相似文献   
10.
The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号