首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   1篇
  2011年   1篇
  2005年   1篇
  2001年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Polyamine Metabolism in Experimental Brain Tumors of Rat   总被引:3,自引:0,他引:3  
Abstract: Biosynthesis and accumulation of the polyamines putrescine, spermidine, and spermine are closely associated with cellular growth processes. We examined polyamine levels and the activity of their first rate-limiting enzyme, ornithine decarboxylase (ODC), in stereotactically induced experimental gliomas of the rat brain 1 and 2 weeks after implantation. Regional ODC activity and polyamine levels were determined in the tumor and in the ipsi- and contralateral striatum, white matter, and cerebral cortex. In the tumor, both ODC activity and polyamine levels markedly increased with progressive tumor growth, as compared to those in the white matter of the opposite hemisphere. In the peritumoral brain tissue, ODC activity did not change, but there was a marked increase of putrescine and, to a lesser degree, of spermidine and spermine almost throughout the whole ipsilateral hemisphere. ODC activity, therefore, seems to be a reliable marker of neoplastic growth in the brain, which may be of use for new clinical concepts of the diagnosis and therapy of brain tumors. The more diffuse distribution of polyamines, however, may be associated with the formation and spreading of edema, which would explain some of the biological effects of tumors on distant brain tissue.  相似文献   
2.
Biosynthesis of the polyamines putrescine, spermidine, and spermine, and activation of the first key enzyme ornithine decarboxylase (ODC) are closely associated with cellular proliferation. In the present study, the distribution of ODC activity and polyamine levels was investigated for the first time regionally in experimental brain tumors of the cat. Brain tumors were produced by stereotactic xenotransplantation of rat glioma cells. Twenty days after implantation, the brains were frozen in situ, cut into slices, and cryostat sections and tissue samples were taken to determine ODC activity and polyamine levels biochemically. The quantified data were color-coded to present the regional distribution of ODC activity and polyamine levels in the respective section. ODC activity significantly increased in some areas within the tumor, whereas peritumoral tissue showed no difference to the non-tumoral, contralateral hemisphere. This increase turned out in parallel to a high number of mitoses in the same tumor parts (r=0.861). Putrescine levels increased both, in the whole tumor and in the peritumoral edema. Regional differences in putrescine content did not correlate with solid and proliferative parts of the tumor. Spermidine and spermine levels were only slightly increased in some parts of the tumor. Thus, these experiments show the close correlation of a high mitotic rate and activation of ODC within experimental gliomas and underline the relevance of ODC as a biochemical marker of proliferation in brain tumors.  相似文献   
3.
Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy ‘Sanger’ sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r2 = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation.  相似文献   
4.
The rate of leucine incorporation into brain proteins was studied in rats with experimental brain tumors produced by intracerebral transplantation of the glioma clone F98. Incorporation was measured with [14C]leucine using a controlled infusion technique for maintaining constant specific activity of [14C]leucine in plasma, followed by quantitative autoradiography and biochemical tissue analysis. After 45 min the specific activity of free [14C]leucine in plasma was 2.5-3 times higher than in brain and brain tumor, indicating that the precursor pool for protein synthesis was fueled both by exogenous (plasma-derived) and endogenous (proteolysis-derived) amino acids. Endogenous recycling of amino acids amounted to 73% of total free leucine pool in brain tumors and to 60-70% in normal brain. Taking endogenous amino acid recycling into account, leucine incorporation was 78.7 +/- 16.0 nmol/g of tissue/min in brain tumor, and 17.2 +/- 4.2 and 9.7 +/- 3.3 nmol/g/min in normal frontal cortex and striatum, respectively. Leucine incorporation within tumor tissue was markedly heterogeneous, depending on the local pattern of tumor proliferation and necrosis. Our results demonstrate that quantitative measurement of leucine incorporation into brain proteins requires estimation of recycling of amino acids derived from proteolysis and, in consequence, biochemical determination of the free amino acid precursor pool in tissue samples. With the present approach such measurements are possible and provide the quantitative basis for the evaluation of therapeutic interventions.  相似文献   
5.

Background

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.

Methods

15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using 68Ga-DOTATATE was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.

Results

The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.

Conclusion

SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.  相似文献   
6.
Background: Neuroblastoma is the most common solid extracranial tumor in childhood, still with poor survival rates for metastatic disease. Neuroblastoma cells are of neuroectodermal origin and express a number of cancer germline (CG) antigens. These CG antigens may represent a potential target for immunotherapy such as peptide-based vaccination strategies. Objective: The purpose of this study was to analyze the presence of MAGE-A1, MAGE-A3/A6, and NY-ESO-1 on an mRNA and protein level and to determine the expression of MHC class I and MHC class II antigens within the same tumor specimens. Methods: A total of 68 tumors were available for RT-PCR, and 19/68 tumors were available for immunohistochemical (IHC) analysis of MAGE-A1, MAGE-A3/A6, and NY-ESO-1. In parallel, the same tumors were stained with a panel of antibodies for MHC class I and MHC class II molecules. Results: Screening of 68 tumor specimens by RT-PCR revealed expression of MAGE-A1 in 44%, MAGE-A3/A6 in 21%, and NY-ESO-1 in 28% of cases. Immunohistochemistry for CG antigens of selected tumors showed good agreement between protein and gene expression. However, staining revealed a heterogeneous expression of CG antigens. None of the selected tumors showed MHC class I or MHC class II expression. Conclusions: mRNA expression of MAGE-A1, MAGE-A3/A6, and NY-ESO-1 is congruent with the protein expression as determined by immunohistochemistry. The heterogeneous CG-antigen expression and the lack of MHC class I and II molecules may have implications for T-cell–mediated immunotherapy in neuroblastoma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号