首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  2023年   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   7篇
  2011年   8篇
  2010年   9篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   7篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
Abstract

Nipah Virus (NiV) is a newly emergent paramyxovirus that has caused various outbreaks in Asian countries. Despite its acute pathogenicity and lack of approved therapeutics for human use, there is an urgent need to determine inhibitors against NiV. Hence, this work includes prospection of potential entry inhibitors by implementing an integrative structure- and network-based drug discovery approach. FDA-approved drugs were screened against attachment glycoprotein (NiV-G, PDB: 2VSM), one of the prime targets to inhibit viral entry, using a molecular docking approach that was benchmarked both on CCDC/ASTEX and known NIV-G inhibitor set. The predicted small molecules were prioritized on the basis of topological analysis of the chemical-protein interaction network, which was inferred by integrating the drug-target network, NiV-human interaction network, and human protein-protein interaction network. A total of 17 drugs were predicted to be NiV-G inhibitors using molecular docking studies that were further prioritized to 3 novel leads???Nilotinib, Deslanoside and Acetyldigitoxin???on the basis of topological analysis of inferred chemical-protein interaction network. While Deslanoside and Acetyldigitoxin belong to an already known class of anti-NiV inhibitors, Nilotinib belongs to Benzenoids chemical class that has not been reported hitherto for developing anti-NiV inhibitors. These identified drugs are expected to be successful in further experimental evaluation and therefore could be used for anti-Nipah drug discovery. Apart, we also obtained various insights into the underlying chemical-protein interaction network, based on which several important network nodes were predicted. The applicability of our proposed approach was also demonstrated by prospecting for anti-NiV phytochemicals on an independent dataset.

Communicated by Ramaswamy H. Sarma  相似文献   
2.
3.
4.
Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer.  相似文献   
5.
Pathania S  Jayaram M  Harshey RM 《Cell》2002,109(4):425-436
The phage Mu transpososome is assembled by interactions of transposase subunits with the left (L) and right (R) ends of Mu and an enhancer (E) located in between. A metastable three-site complex LER progresses into a more stable type 0 complex in which a tetrameric transposase is poised for DNA cleavage. "Difference topology" has revealed five trapped negative supercoils within type 0, three contributed by crossings of E with L and R, and two by crossings of L with R. This is the most complex DNA arrangement seen to date within a recombination synapse. Contrary to the prevailing notion, the enhancer appears not to be released immediately following type 0 assembly. Difference topology provides a simple method for determining the ordered sequestration of DNA segments within nucleoprotein assemblies.  相似文献   
6.
Flp and Cre-mediated recombination on symmetrized FRT and loxP sites, respectively, in circular plasmid substrates yield both DNA inversion and deletion. However, upon sequestering three negative supercoils outside the recombination complex using the resII-resIII synapse formed by Tn3 resolvase and the LER synapse formed by phage Mu transposase in the case of Flp and Cre, respectively, the reactions are channeled towards inversion at the expense of deletion. The inversion product is a trefoil, its unique topology being conferred by the external resolvase or LER synapse. Thus, Flp and Cre assign their symmetrized substrates a strictly antiparallel orientation with respect to strand cleavage and exchange. These conclusions are supported by the product profiles from tethered parallel and antiparallel native FRT sites in dilution and competition assays. Furthermore, the observed recombination bias favoring deletion over inversion in a nicked circular substrate containing two symmetrized FRT sites is consistent with the predictions from Monte Carlo simulations based on antiparallel synapsis of the DNA partners.  相似文献   
7.
8.
An efficient phosphate-solubilizing plant growth–promoting Acinetobacter rhizosphaerae strain BIHB 723 exhibited significantly higher solubilization of tricalcium phosphate (TCP) than Udaipur rock phosphate (URP), Mussoorie rock phosphate (MRP) and North Carolina rock phosphate (NCRP). Qualitative and quantitative differences were discerned in the gluconic, oxalic, 2-keto gluconic, lactic, malic and formic acids during the solubilization of various inorganic phosphates by the strain. Gluconic acid was the main organic acid produced during phosphate solubilization. Formic acid production was restricted to TCP solubilization and oxalic acid production to the solubilization of MRP, URP and NCRP. A significant increase in plant height, shoot fresh weight, shoot dry weight, root length, root dry weight, and root, shoot and soil phosphorus (P) contents was recorded with the inoculated treatments over the uninoculated NP0K or NPTCPK treatments. Plant growth promotion as a function of phosphate solubilization suggested that the use of bacterial strain would be a beneficial addition to the agriculture practices in TCP-rich soils in reducing the application of phosphatic fertilizers.  相似文献   
9.
Integral membrane proteins constitute a major constituent of lipid bilayer both in prokaryotes and eukaryotes. The statistical analysis was carried out to determine the bias in amino acid distribution between prokaryotic and eukaryotic integral membrane proteins (pIntMPs and eIntMPs). Our results indicate that both pIntMPs and eIntMPs demonstrate the striking similarity in amino acid distribution in their transmembrane and extramembranous region. pIntMPs have relatively greater functional importance for Gly and Asn in comparison to eIntMPs.  相似文献   
10.
The enzyme methionine aminopeptidase-2 (MetAP-2) is thought to play an important function in human endothelial cell proliferation, and as such provides a valuable target in both inflammation and cancer. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increased synovial vascularity, and hence is a potential therapeutic target for angiogenesis inhibitors. We examined the use of PPI-2458, a selective non-reversible inhibitor of MetAP-2, in disease models of RA, namely acute and chronic collagen-induced arthritis (CIA) in mice. Whilst acute CIA is a monophasic disease, CIA induced with murine collagen type II manifests as a chronic relapsing arthritis and mimics more closely the disease course of RA. Our study showed PPI-2458 was able to reduce clinical signs of arthritis in both acute and chronic CIA models. This reduction in arthritis was paralleled by decreased joint inflammation and destruction. Detailed mechanism of action studies demonstrated that PPI-2458 inhibited human endothelial cell proliferation and angiogenesis in vitro, without affecting production of inflammatory cytokines. Furthermore, we also investigated release of inflammatory cytokines and chemokines from human RA synovial cell cultures, and observed no effect of PPI-2458 on spontaneous expression of cytokines and chemokines, or indeed on the angiogenic molecule vascular endothelial growth factor (VEGF). These results highlight MetAP-2 as a good candidate for therapeutic intervention in RA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号