首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   26篇
  国内免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   10篇
  2016年   10篇
  2015年   16篇
  2014年   13篇
  2013年   11篇
  2012年   27篇
  2011年   18篇
  2010年   14篇
  2009年   7篇
  2008年   22篇
  2007年   10篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1977年   2篇
  1971年   2篇
排序方式: 共有273条查询结果,搜索用时 109 毫秒
1.
2.
3.
4.
International Journal of Peptide Research and Therapeutics - Initial phase of COVID-19 infection is associated with the binding of viral spike protein S1 receptor binding domain (RBD) with the host...  相似文献   
5.
6.
Polymorphisms in the human prion proteins lead to amino acid substitutions by the conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt–Jakob disease, Gerstmann–Straussler–Scheinker disease and fatal familial insomnia. Cation–π interaction is a non-covalent binding force that plays a significant role in protein stability. Here, we employ a novel approach by combining various in silico tools along with molecular dynamics simulation to provide structural and functional insight into the effect of mutation on the stability and activity of mutant prion proteins. We have investigated impressions of prevalent mutations including 1E1S, 1E1P, 1E1U, 1E1P, 1FKC and 2K1D on the human prion proteins and compared them with wild type. Structural analyses of the models were performed with the aid of molecular dynamics simulation methods. According to our results, frequently occurred mutations were observed in conserved sequences of human prion proteins and the most fluctuation values appear in the 2K1D mutant model at around helix 4 with residues ranging from 190 to 194. Our observations in this study could help to further understand the structural stability of prion proteins.  相似文献   
7.

Introduction

Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.

Methods

For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.

Results

This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.

Conclusions

MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.  相似文献   
8.
International Journal of Peptide Research and Therapeutics - The synthetic, linear peptide, D4E1, demonstrates antimicrobial activity against a broad spectrum of organisms including the toxigenic...  相似文献   
9.
10.
Increasing death rates due to antibiotic resistance deteriorate the existing treatment measures. Antimicrobial peptides have turned into the emerging cure for multidrug resistance. However, the stability and functionality determine an antimicrobial peptide as a drug. Analyses of the homodimeric β-helical peptide, gramicidin have suggested the significant role of gramicidin-A, gramicidin-B, and gramicidin-C as antimicrobial compounds, but the structural basis for understanding the stability and functionality is insufficient to resolve multidrug resistance. To identify the best template among gramicidin types as a therapeutic product, we combined a detailed comparative static analysis and dynamic analysis along with conformational free energy and secondary structure prediction. We observed that the high intramolecular interactions and the geometrical features favored gramicidin-A among other types of gramicidin. Our analyses further revealed that the secondary structure of gramicidin-A showed β sheets with coils along the conformations without any disruption, thereby enhanced its membrane interactions in terms of binding free energy. In conclusion, gramicidin-A has definitely showed enhanced structural stability and functionality; this could be considered the best template for a potential therapeutic product.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号