首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2011年   1篇
  1957年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The use of biological means for ground improvement have become popular, which generally works through the process called microbially-induced calcium carbonate precipitation (MICP). Many studies indicate successful application of MICP based improvement with multiple bacteria and on several soils. Given the proven performance of MICP, this study aims to examine the MICP process by comparing the calcium carbonate precipitation ability of widely studied bacteria, i.e., Sporosarcina pasteurii and relatively under-recognized bacteria, i.e., Bacillus licheniformis to outline the formation success. For this purpose, two different sands were tested for observing precipitation behavior using a series of syringe tests. Furthermore, the effect of concentration and inclusion of calcium chloride for nutrition of bacteria, saturation with water, and hybrid use of two bacteria were investigated in some tests for diversification. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used for the interpretation of results. Results indicated that Sporosarcina pasteurii had performed superior over Bacillus licheniformis when achieving calcium carbonate precipitation in tests for both sands. In addition, many intriguing SEM images contributed to the literature of MICP monitoring, highlighting the effects of the variables investigated.  相似文献   
2.
In this study, the molecular profile changes leading to the adaptation of bacteria to survive and grow at inhibitory silver concentration were explored. The profile obtained through infrared (IR)‐based measurements indicated extensive changes in all biomolecular components, which were supported by chemometric techniques. The changes in biomolecular profile were prominent, including nucleic acids. The changes in nucleic acid region (1350‐950 cm?1) were encountered as a clue for conformational change in DNA. Further analysis of DNA by IR spectroscopy revealed changes in the backbone and sugar conformations. Moreover, Enzyme‐Linked Immunosorbent Assay‐based measurements of DNA methylation levels were performed to see if epigenetic mechanisms are in operation during bacterial adaptation to this environmental challenge. The results indicated a notable demethylation in Escherichia coli and methylation in Staphylococcus aureus likely to be associated with their elaborate adaptation process to sustain survival and growth.   相似文献   
3.
Nitrate sorption potentials of three surface soils (soils-1-3) were evaluated under different solute concentrations, i.e. 1-100 mg L−1. Batch and diffusion-cell adsorption experiments were conducted to delineate the diffusion property and maximum specific nitrate adsorption capacity (MSNAC) of the soils. Ho’s pseudo-second order model well fitted the batch adsorption kinetics data (R2 > 0.99). Subsequently, the MSNAC was estimated using Langmuir and Freundlich isotherms; however, the best-fit was obtained with Langmuir isotherm. Interestingly, the batch adsorption experiments over-estimated the MSNAC of the soils compared with the diffusion-cell tests. On the other hand, a proportionate increase in the MSNAC was observed with the increase in soil organic matter content (OM) under the batch and diffusion-cell tests. Therefore, increasing the soil OM by the application of natural compost could stop nitrate leaching from agricultural fields and also increase the fertility of soil.  相似文献   
4.
5.
From the beginning of the COVID-19 coronavirus pandemic in December of 2019, the disease has infected millions of people worldwide and caused hundreds of thousands of deaths. Since then, several vaccines have been developed. One of those vaccines is inactivated CoronaVac-Sinovac COVID-19 vaccine. In this proof of concept study, we first aimed to determine CoronaVac-induced biomolecular changes in healthy human serum using infrared spectroscopy. Our second aim was to see whether the vaccinated group can be separated or not from the non-vaccinated group by applying chemometric techniques to spectral data. The results revealed that the vaccine administration induced significant changes in some functional groups belonging to lipids, proteins and nucleic acids. In addition, the non-vaccinated and vaccinated groups were successfully separated from each other by principal component analysis (PCA) and linear discriminant analysis (LDA). This proof-of-concept study will encourage future studies on CoronaVac as well as other vaccines and will lead to make a comparison between different vaccines to establish a better understanding of the vaccination outcomes on serum biomolecules.  相似文献   
6.
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague–Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号