首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation. We found that exogenous methyl jasmonate (MeJA) increased L of Phaseolus vulgaris, Solanum lycopersicum and Arabidopsis thaliana roots. Tomato plants defective in JA biosynthesis had lower values of L than wild‐type plants, and that L was restored by addition of MeJA. The increase of L by MeJA was accompanied by an increase of the phosphorylation state of the aquaporin PIP2. We observed that MeJA addition increased the concentration of cytosolic calcium and that calcium channel blockers inhibited the rise of L caused by MeJA. Treatment with fluoridone, an inhibitor of ABA biosynthesis, partially inhibited the increase of L caused by MeJA, and tomato plants defective in ABA biosynthesis increased their L after application of MeJA. It is concluded that JA enhances L and that this enhancement is linked to calcium and ABA dependent and independent signalling pathways.  相似文献   
2.
Species that showed marked morphological and physiological responsesby their roots to Fe-deficiency (Strategy I plants) were comparedwith others that do not exhibit these responses (Strategy IIplants). Roots from Fe-deficient cucumber (Cucumis sativusL.‘Ashley’), tomato (Lycopersicon esculentumMill.T3238FER) and pea (Pisum sativumL. ‘Sparkle’) plantsproduced more ethylene than those of Fe-sufficient plants. Thehigher production of ethylene in Fe-deficient cucumber and peaplants occurred before Fe-deficient plants showed chlorosissymptoms and was parallel to the occurrence of Fe-deficiencystress responses. The addition of either the ethylene precursorACC, 1-aminocyclopropane-1-carboxylic acid, or the ethylenereleasing substance, Ethephon, to several Fe-sufficient StrategyI plants [cucumber, tomato, pea, sugar beet (Beta vulgarisL.),Arabidopsis(Arabidopsis thaliana(L.) Heynh ‘Columbia’), plantago(Plantago lanceolataL.)] promoted some of their Fe-deficiencystress responses: enhanced root ferric-reducing capacity andswollen root tips. By contrast, Fe-deficient roots from severalStrategy II plants [maize (Zea maysL. ‘Funo’), wheat(Triticum aestivumL. ‘Yécora’), barley (HordeumvulgareL. ‘Barbarrosa’)] did not produce more ethylenethan the Fe-sufficient ones. Furthermore, ACC had no effecton the reducing capacity of these Strategy II plants and, exceptin barley, did not promote swelling of root tips. In conclusion,results suggest that ethylene is involved in the regulationof Fe-deficiency stress responses by Strategy I plants.Copyright1999 Annals of Botany Company. Arabidopsis (Arabidopsis thaliana(L.) Heynch), barley (Hordeum vulgareL.), cucumber (Cucumis sativusL.), ethylene, iron deficiency, maize (Zea maysL.), pea (Pisum sativumL.), plantago (Plantago lanceolataL.), ferric-reducing capacity, sugar beet (Beta vulgarisL.), tomato (Lycopersicon esculentumMill.), wheat (Triticum aestivumL.).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号