首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Increased intensity in precipitation events and longer periods of water deficit are predicted as a general trend under future climate scenarios with potentially large effects on terrestrial ecosystem function. The primary objective of this study was to understand how variation in the intensity of precipitation inputs followed by intermittent soil drying events influence leaf and ecosystem carbon dioxide (CO2) and water exchange in a California annual grassland mesocosm experiment. We further examined how nitrogen (N) availability, and differences in plant community composition (grass-forb combinations) affected gas exchange responses to the precipitation treatments. Net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10-day soil drying period, following 11 days of watering, strongly depressed NEE over a range of annual precipitation totals (297, 657 and 987 mm), and plant community types. Ecosystem dark respiration ( R e) and leaf level photosynthesis ( A max) showed greater sensitivity to periods of soil drying in the low precipitation plots (297 mm). N additions significantly increased NEE and R e, particularly as water availability was increased. Across the range of precipitation totals and plant community types, intermittent periods of soil moisture deficit and native soil N availability constrained leaf and ecosystem level CO2 exchange, while the influence on water vapor exchange was less pronounced.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号