首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2009年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Little is known of the potential coevolution of flowers and bees in changing, biodiverse environments. Female solitary bees, megachilids and Centris , and their nest pollen provisions were monitored with trap nests over a 17-year period in a tropical Mexican biosphere reserve. Invasion by feral Apis (i.e. Africanized honey bees) occurred after the study began, and major droughts and hurricanes occurred throughout. Honey bee competition, and ostensibly pollination of native plants, caused changes in local pollination ecology. Shifts in floral hosts by native bees were common and driven by plant phylogenetics, whereby plants of the same families or higher taxa were substituted for those dominated by honey bees or lost as a result of natural processes. Two important plant families, Anacardiaceae and Euphorbiaceae, were lost to competing honey bees, but compensated for by greater use of Fabaceae, Rubiaceae, and Sapotaceae among native bees. Natural disasters made a large negative impact on native bee populations, but the sustained presence of Africanized honey bees did not. Over 171 plant species comprised the pollen diets of the honey bees, including those most important to Centris and megachilids (72 and 28 species, respectively). Honey bee pollination of Pouteria (Sapotaceae) plausibly augmented the native bees' primary pollen resource and prevented their decline. Invasive generalist pollinators may, however, cause specialized competitors to fail, especially in less biodiverse environments.  No claim to original US government works. Journal compilation © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 152–160.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号