首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2005年   1篇
  2004年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The maximum catalytic activities of several photorespiratoryand photosynthetic enzymes were determined in leaf extractsof three C3–C4 intermediates (Alternanthera ficoides,A. tenella and Parthenium hysterophorus) and were compared tothose of C3 (A. sessiles, Pisum sativum) and C4 (A. pungens,Zea mays and Amaranthus hypochondriacus) species. The activitylevels of key photorespiratory enzymes, glycolate oxidase, catalase,NADH-hydroxypyruvate reductase and glycerate kinase were less(28 to 35% reduced) in intermediates than those of typical C3species. Similarly, the activities of photorespiratory aminotransferasesin the C3–C4 intermediates were also partially reduced(23 to 37% reduction). The activities of phosphoenolpyruvatecarboxylase (PEPC), pyruvate, orthophosphate dikinase and NAD-malicenzyme were higher (2 to 7 times) in leaf extracts of the intermediatesthan those of C3 species. But the ratios of PEPC/rubisco inthe C3–C4 intermediates were more like C3 than C4 species.We draw attention to the partial reduction in enzyme activityof photorespiratory metabolism, which could be an importantfactor for restriction of photorespiration in the C3–C4intermediate species, in addition to enzyme compartmentationand/or operation of a ‘C4-like’ cycle Key words: C3–C4 intermediates, C4 pathway, enzyme profile, glycolate metabolism, photorespiration, photosynthesis  相似文献   
2.
3.
Mesophyll protoplasts and bundle sheath cells were prepared by enzymatic digestion of leaves of Alternanthera tenella, a C3-C4 intermediate species. The intercellular distribution of selected photosynthetic, photorespiratory and respiratory (mitochondrial) enzymes in these meso-phyll and bundle sheath cells was studied. The activity levels of photosynthetic enzymes such as PEP carboxylase (EC 4.1.1.31) or NAD-malic enzyme (EC 1.1.1.39) and photorespiratory enzymes such as glycolate oxidase (EC 1.1.3.1) or NADH-hydroxypyruvate reductase (EC 1.1.1.29) were similar in the two cell types. The activity levels of mitochondrial TCA cycle enzymes such as citrate synthase (EC 4.1.3.7) or fumarase (EC 4.2.1.2) were 2- to 3-fold higher in bundle sheath cells. On the other hand, the activity levels of mitochondrial photorespiratory enzymes, namely glycine decarboxylase (EC 2.1.2.10) and serine hydroxymethyltransferase (EC 2.1.2.1), were 6-9-fold higher in bundle sheath cells than in mesophyll protoplasts. Such preferential localization of mitochondria enriched with the glycine-decarboxylating system in the inner bundle sheath cells would result in efficient refixa-tion of CO2 from not only photorespiration but also dark respiration before its exit from the leaf. We propose that predominant localization of mitochondria specialized in glycine decarboxylation in bundle sheath cells may form the basis of reduced photorespiration in this C3-C4 intermediate species.  相似文献   
4.
Leaves of three C4 plants, Setaria italica, Pennisetum typhoides,and Amaranthus paniculatus possessed five- to ten-fold higheractivities of a (Na+-K+)-dependent ATPase than those of twoC3 plants, Oryza sativa and Rumex vesicarius. Na+-K+ ATPasefrom leaves of Amarathus exhibited an optimal pH of 7?5 andan optimal temperature of 35 ?C. It required 40 mM K+ and 80mM Na+ for maximal activity. Ouabain partially inhibited (Na+-K+)-dependentATPase activity in leaves of C4 plants. Ouabain also blockedthe movement of label from initially formed C4 acids into endproducts in leaves of only C4 plants, Setaria and Amaranthusbut not in a C3 plant, Rumex. We propose that Na+-K+ ATPasemay mediate transfer of energy during active transport of C4acids from mesophyll into the bundle sheath.  相似文献   
5.
Mesophyll and bundle sheath chloroplasts were isolated by differential grinding from the leaves of two NADP-ME C4 plants, Setaria italica Beauv. cv. H-1, Pennisetum typhoides S & H. cv. AKP-2, and a NAD-ME C4 species Amaranthus paniculatus L. The mesophyll chloroplasts of C4 plants possessed slightly lower Km for ADP and Pi than those of bundle sheath chloroplasts. The Hill reaction activities and noncyclic photophosphorylation rates of the bundle sheath chloropiasts from S. italica and P. typhoides were less than one-fifth of those by the mesophyll chloroplasts. But the bundle sheath chloroplasts of A. paniculatus exhibited high rates of Hill reaction, cyclic as well as noncyclic photophosphorylation. The pigment- and eyiochrome composition suggested a relative enrichment of PS 1 in bundle sheath chloroplasts of S. italica and P. typhoides. The chain exists in both mesophyll and bundle sheath chloroplasts. As much as 35–52% of leaf chlorophyll was located in the bundle sheath chloroplasts. The photochemical activities of bundle sheath chloroplasts are significant though a major part of leaf photochemical potential is associated with the mesophyll chloroplasts.  相似文献   
6.
7.
Abstract.
  • 1 In a 16-month study in Bangalore, India, about 35% of the newly founded colonies of Ropalidia marginata were single foundress colonies and the remainder were multiple foundress colonies with two to twenty-two individuals.
  • 2 Larger colonies did not have a significantly higher per capita productivity, did not produce significantly heavier progeny and did not produce them significantly faster than smaller colonies did.
  • 3 Predation by the hornet Vespa tropica appeared to be independent of group size.
  • 4 Single foundress colonies failed more often but not often enough to make them have a lower average per capita productivity, compared to multiple foundress colonies.
  • 5 Some of the advantages of multiple foundress associations came from the greater predictability of their attaining the mean per capita productivity, the relatively lower rates of usurpation experienced by them compared to single foundress colonies, and the opportunities provided by queen turnovers for workers to become replacement queens and gain direct individual fitness.
  相似文献   
8.
The influence of varying light intensity and quality on thecarbon labelling patterns in Rumex vesicarius (a C3 plant),Setaria italica (a malate-formingC4 plant), and Amaranthus paniculatus(an aspartate-forming C4 plant) was studied. In A. paniculatusand B. vesicarius blue light decreased the transfer of radioactivityto sugars and starch but in S. italica only slightly decreasedradioactivity in sugar phosphates, sucrose, and insolubles.Negligible transfer was observed from the C4 acids to sugarphosphates, sucrose, and starch under dim blue-green and blue-yellowlights in S. italica and A. paniculatus. Blue light favouredthe formation of malate, aspartate, and alanine in all threeplants. The differential effect of blue and red light suggesteda variation in the mechanisms of C4-photosynthesis in Setariaand Amaranthus. Leaves of S. italica and A. paniculatus were allowed to photosynthesizein 14CO2 for 5 s and then the distribution of the labelled productsbetween the mesophyll and the bundle sheath cells was determinedduring subsequent photosynthesis in 12CO2. Malate and aspartatewhich appeared initially in the mesophyll layer moved rapidlyinto the bundle sheath cells. Phosphoglyceric acid originatingin the bundle sheath moved swiftly to the mesophyll layer. Sugarphosphates were recovered from both the mesophyll and the bundlesheath cells. Most of the starch was found in the bundle sheathcells while sucrose and alanine were localized in the mesophyllcells.  相似文献   
9.
10.
Sterility mosaic disease (SMD), an important biotic constraint on pigeonpea (Cajanus cajan) in the Indian subcontinent, is caused by Pigeonpea sterility mosaic virus (PPSMV) transmitted by the eriophyid mite, Aceria cajani. Distinct PPSMV isolates occur in different geographical regions and broad‐based resistance to all these isolates is scarce in cultivated pigeonpea germplasm. Wild relatives of pigeonpea, which are known to possess resistance to several pests and diseases, were evaluated for broad‐based SMD resistance. One hundred and fifteen wild Cajanus accessions from six species (C. albicans, C. platycarpus, C. cajanifolius, C. lineatus, C. scarabaeoides and C. sericeus) were evaluated against three PPSMV isolates prevailing in peninsular India. Evaluations were done under greenhouse conditions in endemic locations of each isolate through mite‐mediated virus inoculation. Fifteen accessions showed resistance to all three isolates: ICP 15614, 15615, 15626, 15684, 15688, 15700, 15701, 15725, 15734, 15736, 15737, 15740, 15924, 15925 and 15926. Most of the wild accessions did not support mite multiplication. The majority of the accessions resistant to PPSMV following inoculations with viruliferous mites were susceptible by graft inoculation, suggesting that vector resistance is conferring resistance to infection with PPSMV. The 15 accessions identified as being resistant to infection to all three virus isolates tested are cross compatible with pigeonpea by traditional breeding. They are therefore useful for exploitation in breeding programmes to increase both the level of SMD resistance and to diversify its genetic base in the cultivated pigeonpea gene pool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号