首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   12篇
  2011年   13篇
  2010年   10篇
  2009年   14篇
  2008年   9篇
  2007年   9篇
  2006年   1篇
  2005年   5篇
  2004年   8篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1954年   1篇
  1953年   1篇
排序方式: 共有158条查询结果,搜索用时 18 毫秒
1.
2.
1. Aqueous phenol treatment of water extracted disrupted cells of Leishmania tarentolae (LV-414) provided a glycoprotein mixture which was purified by gel filtration chromatography, and Concanavalin A-Sepharose column. 2. The bound fraction on Concanavalin A-Sepharose column (protein 74%, and carbohydrate, 26%) had [alpha]D + 9 degrees and contained mannose (18%), galactose (60%), and glucose (22%), and some of the galactose residues were resistant to periodate oxidation. 3. Treatment of the phenol extract with hot aqueous NaBH4 containing NaOH gave a preparation having mannose (12%), galactose (82%), and glucose (6%). 4. Methylation analysis showed the presence of a mainly linear structure with non-reducing end-units of mannopyranose (6%), 3-O-substituted galactopyranosyl (64%), 2-O- (11%), and 6-O- (5%) substituted mannopyranosyl, and 4-O- (9%), and 4,6-di-O- (3%) substituted glycopyranosyl units. 5. The specific rotation of the preparation, +20 degrees, indicated beta-linked galactopyranosyl units.  相似文献   
3.
Xylose and mannose are the main manosaccharide components of Herpetomonas samuelpessoai and Leptomonas samueli promastigotes. Variations in the xylose/mannose ratios are related to the age of cultures. Phenol-aqueous extraction disclosed in both species the presence of carbohydrate-containing fractions which were both soluble and insoluble in chloroform/methanol/water (10:10.3). The xylose enriched, uronic acid-containing glycoconjugates of L. samueli were mainly composed of (1----4)-linked xylose units (Methylation-mass spectrometry and 13C NMR), similar to the glucuronoxylan of H. samuelpessoai (Mendon?a-Previato et al., 1979 Biochem 18 149-154). SDS-PAGE and sugar composition analysis disclosed similarities between glycoconjugates of H. samuelpessoai and L. samueli, two species dwelling in the same host, therefore an example of convergent adaptation.  相似文献   
4.
5.
Aqueous phenol extraction of the lower trypanosomatid Leptomonas samueli released into the aqueous layer a chloroform/methanol/water-soluble glycophosphosphingolipid fraction. Alkaline degradation and purification by gel filtration chromatography resulted in a tetrasaccharide (phosphatidylinositol (PI)-oligosaccharide A), and a pentasaccharide (PI-oligosaccharide B), each containing 2 mol of 2-aminoethylphosphonate and 1 mol of phosphate. Nuclear magnetic resonance spectroscopy and fast atom bombardment-mass spectrometry suggested that the structure of PI-oligosaccharide A is [formula: see text] and that of PI-oligosaccharide B is as shown. [formula: see text] Both compounds contain an inositol unit linked to ceramide via a phosphodiester bridge. The major aliphatic components of the ceramide portion are stearic acid, lignoceric acid, and C20-phytosphingosine. These novel glycolipids fall within the glycosylated phosphatidylinositol (GPI) family, since they contain the core structure Man alpha (1-->4)GlcNH2 alpha (1-->6)myo-inositol-1-PO4, which is also found in the glycoinositolphospholipids and lipophosphoglycan of Leishmania spp., the L. major promastigote surface protease, the glycosylphosphatidylinositol anchor of Trypanosoma brucei variant surface glycoprotein, and the lipopeptidophosphoglycan of Trypanosoma cruzi. The glycophosphosphingolipids of Leptomonas have features in common with the glycolipids of both Leishmania and T. cruzi, resembling the former by the alpha (1-->3) linkage of mannose to the GPI core, while the 2-aminoethylphosphonate substituent on O-6 of glucosamine and the presence of ceramide in place of glycerol lipids is more reminiscent of T. cruzi. Thus these data lend some support to the hypothesis that both T. cruzi and Leishmania evolved from a Leptomonas-like ancestor.  相似文献   
6.
Ozone (O3) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O3 results in ascorbate‐derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca2+ concentration, generation of reactive oxygen species and cell death. We confirmed that O3 reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O3‐induced signalling pathways that trigger programmed cell death.  相似文献   
7.
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, expresses on its surface an uncommon membrane-bound sialidase, known as trans-sialidase. trans-Sialidase is the product of a multigene family encoding both active and inactive proteins. We report here that an inactive mutant of trans-sialidase physically interacts with CD4(+) T cells. Using a combination of flow cytometry and immunoprecipitation techniques, we identified the sialomucin CD43 as a counterreceptor for trans-sialidase on CD4(+) T cells. Using biochemical, immunological, and spectroscopic approaches, we demonstrated that the inactive trans-sialidase is a sialic acid-binding protein displaying the same specificity required by active trans-sialidase. Taken together, these results suggest that inactive members of the trans-sialidase family can physically interact with sialic acid-containing molecules on host cells and could play a role in host cell/T. cruzi interaction.  相似文献   
8.
Complex glycoinositolphosphoryl ceramides (GIPCs) have been purified from a pathogenic encapsulated wild-type (WT) strain of Cryptococcus neoformans var. neoformans and from an acapsular mutant (Cap67). The structures of the GIPCs were determined by a combination of tandem mass spectrometry, nuclear magnetic resonance spectroscopy, methylation analysis, gas chromatography-mass spectrometry, and chemical degradation. The main GIPC from the WT strain had the structure Manp(alpha1-3)[Xylp(beta1-2)] Manp(alpha1-4)Galp(beta1-6)Manp(alpha1-2)Ins-1-phosphoryl ceramide (GIPC A), whereas the compounds from the acapsular mutant were more heterogeneous in their glycan chains, and variants with Manp(alpha1-6) (GIPC B), Manp(alpha1-6) Manp(alpha1-6) (GIPC C), and Manp(alpha1-2)Manp(alpha1-6)Manp(alpha1-6) (GIPC D) substituents linked to the nonreducing terminal mannose residue found in the WT GIPC A were abundant. The ceramide moieties of C. neoformans GIPCs were composed of a C(18) phytosphingosine long-chain base mainly N-acylated with 2-hydroxy-tetracosanoic acid in the WT GIPC while in the acapsular Cap67 mutant GIPCs, as well as 2-hydroxy-tetracosanoic acid, the unusual 2,3-dihydroxy-tetracosanoic acid was characterized. In addition, structural analysis revealed that the amount of GIPC in the WT cells was fourfold less of that in the acapsular mutant.  相似文献   
9.
In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–1 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.  相似文献   
10.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号