首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  23篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1988年   1篇
  1932年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.

Introduction

Pectopexy, a laparoscopic method for prolapse surgery, showed promising results in recent literature. Further improving this approach by reducing surgical time may decrease complication rates and patient morbidity. Since laparoscopic suturing is a time consuming task, we propose a single suture /mesh ileo-pectineal ligament fixation as opposed to the commonly used continues approach.

Methods

Evaluation was performed on human non-embalmed, fresh cadaver pelves. A total of 33 trials was performed. Eight female pelves with an average age of 75, were used. This resulted in 16 available ligaments. Recorded parameters were ultimate load, displacement at failure and stiffness.

Results

The ultimate load for the mesh + simplified single “interrupted” suture (MIS) group was 35 (± 12) N and 48 (± 7) N for the mesh + continuous suture (MCS) group. There was no significant difference in the ultimate load between both groups (p> 0.05). This was also true for displacement at failure measured at 37 (± 12) mm and 36 (±5) mm respectively. There was also no significant difference in stiffness and failure modes.

Conclusion

Given the data above we must conclude that a continuous suture is not necessary in laparoscopic mesh / ileo-pectineal ligament fixation during pectopexy. Ultimate load and displacement at failure results clearly indicate that a single suture is not inferior to a continuous approach. The use of two single sutures may improve ligamental fixation. However, overall stability should not benefit since the surgical mesh remains the limiting factor.  相似文献   
2.
The cellular endosomal sorting complex required for transport (ESCRT) machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%). All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum) between 45 and 60 nm or a diameter (determined using a Ripley’s L-function analysis) of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices around the neck or in the bud lumen. In the case of ALIX, a cloud of individual molecules surrounding the central clusters was often observed, which we attribute to ALIX molecules incorporated into the nascent HIV-1 Gag shell. Experiments performed using YFP-tagged Tsg101 led to an over 10-fold increase in ESCRT structures colocalizing with HIV-1 budding sites indicating an influence of the fusion protein tag on the function of the ESCRT protein.  相似文献   
3.
Self-pollen seldom results in vital genotypes and can thus be regarded as unimportant. Large-sized clones (clones with many ramets) are more exposed to self-pollen and spread more self-pollen and thus contribute relatively less than small-sized clones. The size of clones required to maximize genetic gain at given diversity, considering that only outcrossing contributes to successful gametes, was derived for tested clones intended to establish a Norway spruce (Picea abies) seed orchard. The derived optimal deployment was compared with linear deployment according to Lindgren and Matheson (Silvae Genet 35:173–177, 1986), where the size of a clone is deployed proportional to its breeding value. The study covered a range of effective numbers between 5 and 50. The results suggest that linear deployment is a good approximation to optimal deployment when only outcrossing is considered. The difference between the two strategies is decreased by increasing clone number and is negligible except at low effective numbers.  相似文献   
4.
5.
6.
7.
Dissecting complex cellular processes requires the ability to track biomolecules as they function within their native habitat. Although genetically encoded tags such as GFP are widely used to monitor discrete proteins, they can cause significant perturbations to a protein's structure and have no direct extension to other classes of biomolecules such as glycans, lipids, nucleic acids and secondary metabolites. In recent years, an alternative tool for tagging biomolecules has emerged from the chemical biology community--the bioorthogonal chemical reporter. In a prototypical experiment, a unique chemical motif, often as small as a single functional group, is incorporated into the target biomolecule using the cell's own biosynthetic machinery. The chemical reporter is then covalently modified in a highly selective fashion with an exogenously delivered probe. This review highlights the development of bioorthogonal chemical reporters and reactions and their application in living systems.  相似文献   
8.
Prescher JA  Bertozzi CR 《Cell》2006,126(5):851-854
Glycans are central to many biological processes, but efforts to define their functions at the molecular level have been frustrated by a lack of suitable technologies. Here we highlight chemical tools that are beginning to address this need.  相似文献   
9.
First‐order organic matter decomposition models are used within most Earth System Models (ESMs) to project future global carbon cycling; these models have been criticized for not accurately representing mechanisms of soil organic carbon (SOC) stabilization and SOC response to climate change. New soil biogeochemical models have been developed, but their evaluation is limited to observations from laboratory incubations or few field experiments. Given the global scope of ESMs, a comprehensive evaluation of such models is essential using in situ observations of a wide range of SOC stocks over large spatial scales before their introduction to ESMs. In this study, we collected a set of in situ observations of SOC, litterfall and soil properties from 206 sites covering different forest and soil types in Europe and China. These data were used to calibrate the model MIMICS (The MIcrobial‐MIneral Carbon Stabilization model), which we compared to the widely used first‐order model CENTURY. We show that, compared to CENTURY, MIMICS more accurately estimates forest SOC concentrations and the sensitivities of SOC to variation in soil temperature, clay content and litter input. The ratios of microbial biomass to total SOC predicted by MIMICS agree well with independent observations from globally distributed forest sites. By testing different hypotheses regarding (using alternative process representations) the physicochemical constraints on SOC deprotection and microbial turnover in MIMICS, the errors of simulated SOC concentrations across sites were further decreased. We show that MIMICS can resolve the dominant mechanisms of SOC decomposition and stabilization and that it can be a reliable tool for predictions of terrestrial SOC dynamics under future climate change. It also allows us to evaluate at large scale the rapidly evolving understanding of SOC formation and stabilization based on laboratory and limited filed observation.  相似文献   
10.
Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate. Human sialin is defective in two inherited sialic acid storage diseases and is responsible for metabolic incorporation of the dietary nonhuman sialic acid N-glycolylneuraminic acid. We built cytosol-open and lumen-open three-dimensional models of sialin based on weak, but significant, sequence similarity with the glycerol-3-phosphate and fucose permeases from Escherichia coli, respectively. Molecular docking of 31 synthetic sialic acid analogues to both models was consistent with inhibition studies. Narrowing the sialic acid-binding site in the cytosol-open state by two phenylalanine to tyrosine mutations abrogated recognition of the most active analogue without impairing neuraminic acid transport. Moreover, a pilot virtual high-throughput screening of the cytosol-open model could identify a pseudopeptide competitive inhibitor showing >100-fold higher affinity than the natural substrate. This validated model of human sialin and sialin-guided models of other SLC17 transporters should pave the way for the identification of inhibitors, glycoengineering tools, pharmacological chaperones, and fluorescent false neurotransmitters targeted to these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号