首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   9篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   16篇
  2007年   13篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1966年   1篇
  1964年   2篇
  1962年   2篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
1.
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the K(m) values calculated for the substrate and NADPH are 6.5x10(-5)m and 2.8x10(-5)m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.  相似文献   
2.
Sulphoxidation of compounds capable of undergoing biological sulphoxidation has been demonstrated in a model system (NADH-phenazine methosulphate-O(2)), known to generate superoxide anions (O(2) (-)). Addition of superoxide dismutase to this system results in complete inhibition, suggesting the involvement of O(2) (-) in sulphoxidation.  相似文献   
3.
4.

Aim

To examine the relationship between retinal ganglion cell loss and changes in the inner nuclear layer (INL) in optic neuritis (ON).

Methods

36 multiple sclerosis (MS) patients with a history of ON and 36 age and sex-matched controls underwent Optical Coherence Tomography. The paramacular retinal nerve fiber layer (RNFL), combined ganglion cell and inner plexiform layers (GCL/IPL) and inner nuclear layer (INL) thickness were measured at 36 points around the fovea. To remove inter-subject variability, the difference in thickness of each layer between the ON and fellow eye of each patient was calculated. A topographic analysis was conducted.

Results

The INL of the ON patients was thicker than the controls (42.9µm versus 39.6µm, p=0.002). ON patients also had a thinner RNFL (27.8µm versus 32.2µm, p<0.001) and GCL/IPL (69.3µm versus 98.1µm, p<0.001). Among the controls, there was no correlation between RNFL and GCL/IPL as well as RNFL and INL, but a positive correlation was seen between GCL/IPL and INL (r=0.65, p<0.001). In the ON group, there was a positive correlation between RNFL and GCL/IPL (r=0.80, p<0.001) but a negative correlation between RNFL and INL (r=-0.61, p<0.001) as well as GCL/IPL and INL (r=-0.44, p=0.007). The negative correlation between GCL/IPL and INL strengthened in the ON group when inter-subject variability was removed (r=-0.75, p<0.001). Microcysts within the INL were present in 5 ON patients, mainly in the superior and infero-nasal paramacular regions. While patients with microcysts lay at the far end of the correlation curve between GCL/IPL and INL (i.e. larger INL and smaller GCL/IPL compared to other patients), their exclusion did not affect the correlation (r= -0.76, p<0.001).

Conclusions

INL enlargement in MS-related ON is associated with the severity of GCL loss. This is a continuous relationship and patients with INL microcysts may represent the extreme end of the scale.  相似文献   
5.
ABSTRACT:?

Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.  相似文献   
6.
This article focuses on the political struggles between Hindu and Muslim Indian immigrant groups in the United States over the definition of "Indianness". Hindu Indian American organizations define India as a Hindu society and are strong supporters of the Hindu nationalist movement in India. Muslim Indian American organizations, on the other hand, view India as a multi-religious and multicultural society. They are striving to safeguard India's secularism and towards this end, have entered into coalitional relationships with lower caste groups. Both types of organizations are working to influence American and Indian politics in line with their respective interests, leading to an exacerbation of the conflict between the two immigrant groups. This article examines the reasons for this development and its implications, both for the development of an Indian American community in the United States and for religion and politics in India.  相似文献   
7.
8.
Human choriogonadotropin (hCG) contains an alpha-subunit, common to other members of the glycoprotein hormone family, and a unique beta-subunit that determines hormone specificity. It is generally thought that heterodimer formation is obligatory for full hormonal activity, although other studies have indicated that individual subunits and homodimeric hCGbeta were capable of low affinity binding to the LH receptor (LHR) and subsequent activation. Previously, we constructed two yoked hormone (hCG)-LHR complexes, where the two hormone subunits and the heptahelical receptor were engineered to form single polypeptide chains, i.e. N-beta-alpha-LHR-C and N-alpha-beta-LHR-C. Expression of both complexes led to constitutive stimulation of cAMP production. In the present study, we investigated whether the human alpha-subunit and hCGbeta can act as functional agonists when covalently attached to or coexpressed with the LH receptor. Our initial results showed that hCGbeta, but not alpha, was able to activate LHR with an increase in intracellular cAMP in human embryonic kidney 293 cells but not in Chinese hamster ovary or COS-7 cells. Further examination of this apparent cell-specific agonist activity of hCGbeta revealed that low levels of endogenous alpha-subunit were expressed in human embryonic kidney 293 cells, thus enabling sufficient amounts of active heterodimer to form with the transfected hCGbeta to activate LHR. The studies in Chinese hamster ovary and COS-7 cells clearly demonstrate that, even under experimental conditions where hormone-receptor interactions are maximized, individual subunits of hCG can not act as functional agonists, at least in their monomeric form.  相似文献   
9.
Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) is a critical component of base excision repair that excises abasic lesions created enzymatically by the action of DNA glycosylases on modified bases and non-enzymatically by hydrolytic depurination/depyrimidination of nucleobases. Many anticancer drugs generate DNA adducts that are processed by base excision repair, and tumor resistance is frequently associated with enhanced APE-1 expression. Accordingly, APE-1 is a potential therapeutic target to treat cancer. Using computational approaches and the high resolution structure of APE-1, we developed a 5-point pharmacophore model for APE-1 small molecule inhibitors. One of the nM APE-1 inhibitors (AJAY-4) that was identified based on this model exhibited an overall median growth inhibition (GI50) of 4.19 μM in the NCI-60 cell line panel. The mechanism of action is shown to be related to the buildup of abasic sites that cause PARP activation and PARP cleavage, and the activation of caspase-3 and caspase-7, which is consistent with cell death by apoptosis. In a drug combination growth inhibition screen conducted in 10 randomly selected NCI-60 cell lines and with 20 clinically used non-genotoxic anticancer drugs, a synergy was flagged in the SK-MEL-5 melanoma cell line exposed to combinations of vemurafenib, which targets melanoma cells with V600E mutated BRAF, and AJAY-4, our most potent APE-1 inhibitor. The synergy between AJAY-4 and vemurafenib was not observed in cell lines expressing wild-type B-Raf protein. This synergistic combination may provide a solution to the resistance that develops in tumors treated with B-Raf-targeting drugs.

Electronic supplementary material

The online version of this article (doi:10.1007/s12154-015-0131-7) contains supplementary material, which is available to authorized users.  相似文献   
10.
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号