首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2003年   1篇
  1994年   1篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
Isolation and structural studies of the intact scrapie agent protein   总被引:19,自引:0,他引:19  
Purification of the scrapie agent by methods using digestion with proteinase K yields a protein product, PrP-27-30, with an apparent mass of 27-30 kDa (D. C. Bolton et al. (1982) Science 218, 1309-1311; S. B. Prusiner et al. (1982) Biochemistry 21, 6942-6950). In contrast, a 33-37 kDa glycoprotein, HaSp33-37, was the major protein component isolated from scrapie-affected hamster brain by a procedure that did not use protease digestion. The purified fractions containing HaSp33-37 had greater than 10(11) LD50 units of the scrapie agent per milligram of protein. Proteinase K digestion of HaSp33-37 gave a product indistinguishable from PrP-27-30 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The amino acid sequence of the first 22 residues of HaSp33-37 was determined. The sequence coincided with that predicted for the N-terminus of the precursor to PrP-27-30 (K. Basler et al. (1986) Cell 46, 417-428; N. K. Robakis et al. (1986) Proc. Natl. Acad. Sci. USA 83, 6377-6381) after processing by signal protease. HaSp33-37 was digested with N alpha-tosyl-L-phenylalanine chloromethyl ketone-trypsin to produce a 29-32 kDa protein fragment; following digestion this fraction retained complete biological activity. The amino terminal sequence of the 29-32 kDa protein corresponded to a position intermediate between the amino termini of HaSp33-37 and PrP-27-30. We conclude that HaSp33-37 is the intact form of the scrapie agent protein and that PrP-27-30 is produced by proteinase K degradation when this enzyme is introduced during isolation of the scrapie agent.  相似文献   
2.
3.
The beta-amyloid peptide precursor (beta-APP) exists in brain tissue as a membrane-associated protein extractable with 1% Triton X-100. beta-APP has been purified to near homogeneity by the following procedure: 1) anion exchange chromatography, 2) affinity chromatography on heparin agarose, and 3) immunoaffinity adsorption on matrix-bound antibodies directed to a synthetic peptide corresponding to the last 24 amino acids of the cDNA derived amino acid sequence of beta-APP. Conditions were chosen to minimize denaturation of the protein. The identity of the protein was confirmed by its immunoreactivity with antisera directed to five subsequences derived from the cDNA sequence. The amino-terminal sequence of beta-APP was found to be Leu-Glu-Val-Pro-Thr-Asp-Gly-Asn-Ala-Gly-Leu-Leu-Ala-Glu-Pro, which commences at residue 18 of the cDNA-derived primary structure. The procedure resulted in a 2000-fold purification of beta-APP. The purified protein migrated on polyacrylamide gels as a doublet of apparent molecular mass 100-120 kDa, although the predicted molecular mass of its constituent amino acids is 76 kDa. beta-APP clearly behaves anomalously in gel electrophoresis. The beta-APP content of rat brain amounted to 46 micrograms/g tissue. The half-life of the protein was calculated to be about 10 h, which is 30 times as long as that observed by others in transfected PC-12 cells. We conclude that transfected cell systems may not be adequate models for beta-APP processing.  相似文献   
4.
The beta-amyloid peptide (Abeta) is a normal product of the proteolytic processing of its precursor (beta-APP). Normally, it elicits a very low humoral immune response; however, the aggregation of monomeric Abeta to form fibrillar Abeta amyloid creates a neo-epitope, to which antibodies are generated. Rabbits were injected with fibrillar human Abeta(1-42), and the resultant antibodies were purified and their binding properties characterized. The antibodies bound to an epitope in the first eight residues of Abeta and required a free amino terminus. Additional residues did not affect the affinity of the epitope as long as the peptide was unaggregated; the antibody bound Abeta residues 1-8, 1-11, 1-16, 1-28, 1-40, and 1-42 with similar affinities. In contrast, the antibodies bound approximately 1000-fold more tightly to fibrillar Abeta(1-42). Their enhanced affinity did not result from their bivalent nature: monovalent Fab fragments exhibited a similar affinity for the fibrils. Nor did it result from the particulate nature of the epitope: monomeric Abeta(1-16) immobilized on agarose and soluble Abeta(1-16) exhibited similar affinities for the antifibrillar antibodies. In addition, antibodies raised to four nonfibrillar peptides corresponding to internal Abeta sequences did not exhibit enhanced affinity for fibrillar Abeta(1-42). Antibodies directed to the C-terminus of Abeta bound poorly to fibrillar Abeta(1-42), which is consistent with models where the carboxyl terminus is buried in the interior of the fibril and the amino terminus is on the surface. When used as an immunohistochemical probe, the antifibrillar Abeta(1-42) IgG exhibited enhanced affinity for amyloid deposits in the cerebrovasculature. We hypothesize either that the antibodies recognize a specific conformation of the eight amino-terminal residues of Abeta, which is at least 1000-fold more favored in the fibril than in monomeric peptides, or that affinity maturation of the antibodies produces an additional binding site for the amino-terminal residues of an adjacent Abeta monomer. In vivo this specificity would direct the antibody primarily to fibrillar vascular amyloid deposits even in the presence of a large excess of monomeric Abeta or its precursor. This observation may explain the vascular meningeal inflammation that developed in Alzheimer's disease patients immunized with fibrillar Abeta. Passive immunization with an antibody directed to an epitope hidden in fibrillar Abeta and in the transmembrane region of APP might be a better choice in the search for an intervention to remove Abeta monomers without provoking an inflammatory response.  相似文献   
5.
6.
The influence of phenylacetate, phenylbutyrate, and phenylacetyl-CoA on the activity of choline acetyltransferase and S-acetyl-CoA synthetase was investigated in vitro. Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. In contrast, millimolar concentrations of phenylacetate and phenylbutyrate were required to inhibit the activity of the enzyme. Activity of S-acetyl-CoA synthetase was affected only slightly by the three agents in concentrations of 10(-3)-10(-2)M. At this time, results are interpreted to suggest that in phenylketonuria, phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA.  相似文献   
7.
The in vivo formation of [1-14C]acetyl-coenzyme A from D-[3-14C]3-hydroxybutyrate in the brain of the suckling rat was not affected by postnatal exposure to phenyl acetate. However, utilization of the generated acetyl-coenzyme A was significantly inhibited in certain metabolic reactions, namely synthesis of fatty acids and of sterols, but not in others as the Krebs cycle reactions that lead to the production of dicarboxylic amino acids. The incorporation of D-[U-14C]glucosamine into N-acetylneuraminic acid bound to glycoproteins was appreciably diminished in the rat pup previously exposed to maternal phenylketonuria induced by phenyl acetate. During the period of very rapid development of the brain, interference by phenyl acetate and/or its metabolites with certain critical biosynthetic pathways that require acetyl-coenzyme A would significantly contribute to retarded maturation of the brain that occurs in phenylketonuria.  相似文献   
8.
9.
—After placement of lesions in the hippocampus by electrocoagulation, an increase in bound acetylcholine above control levels was shown. There was no concomitant rise in free acetylcholine. The rise in bound acetylcholine was not due to changes in levels of either acetylcholinesterase or choline acetyltransferase and it is suggested that the interruption of septal impulses and/or alterations in uptake or availability of substrates is responsible.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号