首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Fedorov  B. A.  Smirnov  A. V.  Yaroshenko  V. V.  Porozov  Yu. B. 《Biophysics》2019,64(1):38-48
Biophysics - Abstract—This work describes an updated method of cubes, which allows calculation of the SAS curves for biopolymers in solution on the basis of the coordinates of their atoms...  相似文献   
2.
G protein-activated K(+) channels (GIRKs; Kir3) are activated by direct binding of Gbetagamma subunits released from heterotrimeric G proteins. In native tissues, only pertussis toxin-sensitive G proteins of the G(i/o) family, preferably Galpha(i3) and Galpha(i2), are donors of Gbetagamma for GIRK. How this specificity is achieved is not known. Here, using a pull-down method, we confirmed the presence of Galpha(i3-GDP) binding site in the N terminus of GIRK1 and identified novel binding sites in the N terminus of GIRK2 and in the C termini of GIRK1 and GIRK2. The non-hydrolyzable GTP analog, guanosine 5'-3-O-(thio)triphosphate, reduced the binding of Galpha(i3) by a factor of 2-4. Galpha(i1-GDP) bound to GIRK1 and GIRK2 much weaker than Galpha(i3-GDP). Titrated expression of components of signaling pathway in Xenopus oocytes and their activation by m2 muscarinic receptors revealed that G(i3) activates GIRK more efficiently than G(i1), as indicated by larger and faster agonist-evoked currents. Activation of GIRK by purified Gbetagamma in excised membrane patches was strongly augmented by coexpression of Galpha(i3) and less by Galpha(i1). Differences in physical interactions of GIRK with GDP-bound Galpha subunits, or Galphabetagamma heterotrimers, may dictate different extents of Galphabetagamma anchoring, influence the efficiency of GIRK activation by Gbetagamma, and play a role in determining signaling specificity.  相似文献   
3.
A “coarse-grained” model of protein conformational mobility is presented. The conformational paths in five proteins, predicted using the model, are compared with those obtained by the nearest-neighbor method basing on the small-angle X-ray scattering data. The sequences of conformations evaluated with the help of these two approaches have been shown for all proteins under consideration to coincide well; yet there are exceptions, their causes having to be considered for each protein separately.  相似文献   
4.
The paper highlights approaches to fast prediction of protein conformational mobility. A new mathematical model based on the transportation principle is proposed. We describe an algorithm and soft-ware developed for a construction of the possible trajectories of the large-scale conformational motions of proteins (i.e. movements that occur within relatively large time intervals of the order of milliseconds). The modeling showed that the proposed method provides adequate, in terms of current knowledge of the biology and physics of proteins, results and allows simulation of large-scale conformational transitions for less time.  相似文献   
5.
Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient’s treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.  相似文献   
6.
Cardiac and neuronal G protein-activated K+ channels (GIRK; Kir3) open following the binding of Gbetagamma subunits, released from Gi/o proteins activated by neurotransmitters. GIRKs also possess basal activity contributing to the resting potential in neurons. It appears to depend largely on free Gbetagamma, but a Gbetagamma-independent component has also been envisaged. We investigated Gbetagamma dependence of the basal GIRK activity (A(GIRK,basal)) quantitatively, by titrated expression of Gbetagamma scavengers, in Xenopus oocytes expressing GIRK1/2 channels and muscarinic m2 receptors. The widely used Gbetagamma scavenger, myristoylated C terminus of beta-adrenergic kinase (m-cbetaARK), reduced A(GIRK,basal) by 70-80% and eliminated the acetylcholine-evoked current (I(ACh)). However, we found that m-cbetaARK directly binds to GIRK, complicating the interpretation of physiological data. Among several newly constructed Gbetagamma scavengers, phosducin with an added myristoylation signal (m-phosducin) was most efficient in reducing GIRK currents. m-phosducin relocated to the membrane fraction and did not bind GIRK. Titrated expression of m-phosducin caused a reduction of A(GIRK,basal) by up to 90%. Expression of GIRK was accompanied by an increase in the level of Gbetagamma and Galpha in the plasma membrane, supporting the existence of preformed complexes of GIRK with G protein subunits. Increased expression of Gbetagamma and its constitutive association with GIRK may underlie the excessively high A(GIRK,basal) observed at high expression levels of GIRK. Only 10-15% of A(GIRK,basal) persisted upon expression of both m-phosducin and cbetaARK. These results demonstrate that a major part of Ibasal is Gbetagamma-dependent at all levels of channel expression, and only a small fraction (<10%) may be Gbetagamma-independent.  相似文献   
7.
Succinic semialdehyde dehydrogenase (SSADH) converts succinic semialdehyde (SSA) to succinic acid in the mitochondrial matrix and is involved in the metabolism of the inhibitory neurotransmitter γ‐aminobutyric acid (GABA). The molecular structure of human SSADH revealed the intrinsic regulatory mechanism—redox‐switch modulation—by which large conformational changes are brought about in the catalytic loop through disulfide bonding. The crystal structures revealed two SSADH conformations, and computational modeling of transformation between them can provide substantial insights into detailed dynamic redox modulation. On the basis of these two clear crystal structures, we modeled the conformational motion between these structures in silico. For that purpose, we proposed and used a geometry‐based coarse‐grained mathematical model of long‐range protein motion and the related modeling algorithm. The algorithm is based on solving the special optimization problem, which is similar to the classical Monge–Kantorovich mass transportation problem. The modeled transformation was supported by another morphing method based on a completely different framework. The result of the modeling facilitates better interpretation and understanding of the SSADH biological role. Proteins 2015; 83:2217–2229. © 2015 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号