首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2021年   4篇
  2019年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2003年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Origin of strigolactones in the green lineage   总被引:1,自引:0,他引:1  
? The aims of this study were to investigate the appearance of strigolactones in the green lineage and to determine the primitive function of these molecules. ? We measured the strigolactone content of several isolated liverworts, mosses, charophyte and chlorophyte green algae using a sensitive biological assay and LC-MS/MS analyses. In parallel, sequence comparison of strigolactone-related genes and phylogenetic analyses were performed using available genomic data and newly sequenced expressed sequence tags. The primitive function of strigolactones was determined by exogenous application of the synthetic strigolactone analog, GR24, and by mutant phenotyping. ? Liverworts, the most basal Embryophytes and Charales, one of the closest green algal relatives to Embryophytes, produce strigolactones, whereas several other species of green algae do not. We showed that GR24 stimulates rhizoid elongation of Charales, liverworts and mosses, and rescues the phenotype of the strigolactone-deficient Ppccd8 mutant of Physcomitrella patens. ? These findings demonstrate that the first function of strigolactones was not to promote arbuscular mycorrhizal symbiosis. Rather, they suggest that the strigolactones appeared earlier in the streptophyte lineage to control rhizoid elongation. They may have been conserved in basal Embryophytes for this role and then recruited for the stimulation of colonization by glomeromycotan fungi.  相似文献   
2.
The transition from water to land was a major evolutionary step for the green lineage. Based on fossil data, this event probably occurred some 480–430 million years ago, during the Ordovician and the early Silurian and initiated the explosive evolution that led to the modern diversity of photosynthetic organisms living on Earth. The chronological steps are still puzzling, but the great advances in genetics have allowed some of them to be positioned on the time axis.Chloroplastic organisms evolving towards terrestrialization have had to solve many problems: limited water supply, scarcity of mineral and especially phosphorus, harmful effect of ultraviolet and cosmic rays, pronounced fluctuations of temperature and attacks from new and diversified microbes. Many adaptations, such as the modification of the life cycle (sporophytes, seeds), organ diversification (root and leaves), the appearance of complex phenolic compounds (lignin, flavonoids), vascularization, the accumulation of new compounds (cutin, suberin), the development of specialized cells and the establishment of symbiotic interactions, have all played major roles during the transition from water to land and have resulted in the rich plant biodiversity of today. Some molecular and biochemical aspects putatively associated with land plant emergence are summarized here.  相似文献   
3.
Vertebrate dung and carrion are rich and strongly attractive resources for numerous beetles that are often closely linked to them. The presence and abundance of beetles exploiting such resources are influenced by various ecological factors including climate and forest cover vegetation. We studied selected assemblages of coprophilous and necrophagous beetles in Quebec along a 115-km north-south transect in three balsam fir (Abies balsamea (L.) Miller) forest sites and in a fourth forest site dominated by sugar maple (Acer saccharum Marshall), close to the southern fir site. Beetle abundance was estimated using a sampling design comprising replicated pitfall traps baited with red deer meat or dung in each site. A total of 8,511 beetles were caught and identified to family level, 95.7% of which belonged to families with known coprophilous or necrophagous behavior. Meat-baited pitfall traps caught nearly 15 times as many beetles as dung-baited traps. All Histeridae, Hydrophilidae, Scarabaeidae, and Silphidae were identified to species to examine specific diversity variation among sites. For the beetles caught in the meat-baited traps (majority of captures), decreases in abundance and species richness were observed from south to north along the fir forest transect, with evidence of decreasing specific diversity as measured by the Shannon index of diversity. Strong differences in species assemblages were also observed between the southern maple and fir forest sites. The Silphidae and Histeridae were more abundant in the maple forest, whereas the Hydrophilidae and Ptilidae were more abundant in the fir forest.  相似文献   
4.
5.
Symbiotic associations between leguminous plants and nitrogen‐fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatulaSinorhizobium meliloti association is an excellent model for dissecting this nitrogen‐fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique – matrix‐assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) – to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8–bis(dimethyl‐amino) naphthalene, DMAN] with a conventional matrix 2,5–dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non‐fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.  相似文献   
6.
Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.  相似文献   
7.
8.
9.
Thirty-nine of 106 algal strains tested were successfully lyophilized using at least one of the following as suspending agents: 20% (w/v) skim milk, 12% (w/v) sucrose, 100% lamb serum and 100% horse serum. The majority of the Chlorella and Scenedesmusstrains tested (27/40) were amenable to freeze-drying. Much less success (3/18) occurred with the Chlamydomonas strains tested. At least one strain of Ankistrodesmus, Bracteacoccus, Characium, Trebouxia, Haematococcus, Coccomyxa, Interfilum, Hormidium and Nephrodiella were also recovered. More strains were recovered with 20% skim milk as the protective agent than with 12% sucrose; however, 12% sucrose generally provided higher yields. Freeze-drying appears to be an effective method of preservation far some algal strains.  相似文献   
10.
Activation of fibroblast growth factor (FGF) signaling is initiated by a multiprotein complex formation between FGF, FGF receptor (FGFR), and heparan sulfate proteoglycan on the cell membrane. Cross-talk with other factors could affect this complex assembly and modulate the biological response of cells to FGF. We have previously demonstrated that anosmin-1, a glycosylated extracellular matrix protein, interacts with the FGFR1 signaling complex and enhances its activity in an IIIc isoform-specific and HS-dependent manner. The molecular mechanism of anosmin-1 action on FGFR1 signaling, however, remains unknown. Here, we show that anosmin-1 directly binds to FGFR1 with high affinity. This interaction involves domains in the N terminus of anosmin-1 (cysteine-rich region, whey acidic protein-like domain and the first fibronectin type III domain) and the D2–D3 extracellular domains of FGFR1. In contrast, anosmin-1 binds to FGFR2IIIc with much lower affinity and displays negligible binding to FGFR3IIIc. We also show that FGFR1-bound anosmin-1, although capable of binding to FGF2 alone, cannot bind to a FGF2·heparin complex, thus preventing FGFR1·FGF2·heparin complex formation. By contrast, heparin-bound anosmin-1 binds to pre-formed FGF2·FGFR1 complex, generating an anosmin-1·FGFR1·FGF2·heparin complex. Furthermore, a functional interaction between anosmin-1 and the FGFR1 signaling complex is demonstrated by immunofluorescence co-localization and Transwell migration assays where anosmin-1 was shown to induce opposing effects during chemotaxis of human neuronal cells. Our study provides molecular and cellular evidence for a modulatory action of anosmin-1 on FGFR1 signaling, whereby binding of anosmin-1 to FGFR1 and heparin can play a dual role in assembly and activity of the ternary FGFR1·FGF2·heparin complex.FGF5 signaling plays an important role in a wide range of fundamental biological responses (13). Both FGF and FGFR bind to heparan sulfate (HS) and heparin, a highly sulfated type of HS produced in connective tissue mast cells. Heparan sulfate proteoglycans (HSPG) are the cell surface co-receptors essential for the formation of functional FGF·FGFR signaling complex (4, 5). There are four structurally related FGFRs (FGFR1–4), which consist of an extracellular ligand-binding region containing three immunoglobulin (Ig)-like domains (D1–D3), a single transmembrane domain, and a cytoplasmic domain with protein-tyrosine kinase catalytic activity. The 22 members of the FGF family bind to the interface formed by the D2/D3 domains and the linker between these domains (6, 7), whereas a conserved positively charged region in D2 serves as the HS binding site (8). An unusual stretch of seven to eight acidic residues designated as the “acid box” is present in the linker connecting D1 and D2. Alternative splicing events occur to generate various isoforms, including a truncated receptor lacking D1 and the D1–D2 linker or a full-length receptor that differs in the second half of D3, designated as IIIb and IIIc isoforms (5). Two crystal structures have been proposed to demonstrate how the FGF·FGFR·heparin complex is assembled (9, 10). Recent evidence suggests that both may be biologically relevant (11, 12).The diversity of FGF signaling pathways and consequent biological functions require that activation of FGFR should be tightly regulated. Such regulation can occur either at the level of the extracellular receptor-ligand complex assembly or via intracellular modulation of downstream effectors (13). Extracellular regulation mainly involves the interaction between each component of the FGF·FGFR·HS signaling complex. For example, FGF8 is shown to bind mostly to the FGFR IIIc isoforms, whereas FGF7 acts as the preferential ligand for the FGFR2 IIIb isoform (13, 14). Sequence specificity, length, and sulfation patterns of HS are also important regulators of the FGF·FGFR interaction (15, 16).Cell surface proteins other than FGFs and HSPGs participate in FGFR signaling regulation. FLRT3 (a member of the fibronectin-leucine-rich transmembrane protein family) promotes FGF signaling and interacts with FGFR1 and FGFR4 via its extracellular fibronectin type III (FnIII) domain (17). Sef (similar expression to fgf genes) functions as an antagonist of FGF signaling in zebrafish. The two FnIII regions of Sef are essential for its function and interaction with FGFR1 and FGFR2 (18). Neuronal cell adhesion molecule (NCAM), N-cadherin, and L1 have also been identified as functionally relevant in FGFR-mediated neurite outgrowth (1922). The FnIII domains of NCAM bind to the D2 and D3 domains of FGFR1 (19) and FGFR2 (23) to induce ligand-independent receptor phosphorylation.Anosmin-1, an extracellular matrix-associated glycosylated protein, appears to be a novel member of the extracellular FGFR signaling modulators (24, 25). Loss-of-function mutations of anosmin-1 and FGFR1 are associated with Kallmann syndrome (KS), underlying X-linked, and autosomal dominant/recessive inheritance mode, respectively (2628). KS is a human developmental genetic disorder characterized by loss of sense of smell (anosmia) caused by abnormal olfactory bulb development and delayed, even arrested puberty caused by disrupted migration of the gonadotropin-releasing hormone (GnRH)-secreting neuron. We previously reported that anosmin-1 acts as an FGFR1IIIc isoform-specific co-ligand, which enhances signaling activity. In human embryonic GnRH olfactory neuroblast FNC-B4 cells, anosmin-1 induced neurite outgrowth and cytoskeletal rearrangements through FGFR1-dependent mechanisms involving p42/44 and p38 mitogen-activated protein kinases and Cdc42/Rac1 activation (25). A functional interaction is also demonstrable between anosmin-1 and FGFR1 in optic nerve oligodendrocyte precursor development (24). Structurally, anosmin-1 comprises an N-terminal cysteine-rich domain (CR) and a whey acidic protein-like (WAP) domain, followed by four tandem FnIII repeats and a C-terminal histidine rich region (Fig. 1a). Current evidence suggests that anosmin-1 functions by affecting FGF2-induced activation of FGFR1 signaling rather than by directly stimulating the receptor. However, the precise molecular mechanism of this interaction remains unclear.Open in a separate windowFIGURE 1.Generation of recombinant anosmin-1, anosmin-1 mutants, FGFR1D1D3, and FGFR1D2D3 proteins. a, the schematic structures of recombinant proteins of anosmin-1 and FGFR1. Each domain in the wild type (PIWF4), point mutants (mPIWF4N267K, mPIWF4E514K, and mPIWF4F517L), and truncated (PIWF1, PIWF2, and PIF4) anosmin-1 protein analogues are represented by a shaded rectangle. V5 and 6His epitopes at the C terminus are represented by a clear rectangle. Each immunoglobulin-like domain in the full ectodomain (FGFR1D1D3) and truncated form (FGFR1D2D3) of FGFR1 is represented by a half circle. The acid box (AB) is represented by a filled rectangle. H, histidine-rich region. b, 0.5–1 μg of purified recombinant proteins are loaded in each lane and visualized by colloidal blue staining. Molecular mass markers in kilodaltons are shown on the left.We now report for the first time that anosmin-1 directly binds to FGFR1 using surface plasmon resonance (SPR), chemical cross-linking, and immunofluorescence co-localization studies in living cells. This interaction occurs between the N-terminal CR, WAP, and the first FnIII domain of anosmin-1 and D2 and D3 ectodomains of FGFR1. Moreover, SPR studies using sequential injections and Transwell migration assays in immortalized FNC-B4-hTERT cells suggest that anosmin-1 can have opposing effects in the formation and activation of the FGF2·FGFR1·heparin complex depending on the order of their binding interactions with anosmin-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号