首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   51篇
  2023年   2篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   9篇
  2015年   16篇
  2014年   8篇
  2013年   18篇
  2012年   28篇
  2011年   18篇
  2010年   16篇
  2009年   17篇
  2008年   15篇
  2007年   15篇
  2006年   14篇
  2005年   14篇
  2004年   9篇
  2003年   13篇
  2002年   14篇
  2001年   4篇
  2000年   13篇
  1999年   17篇
  1998年   10篇
  1997年   10篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   12篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   10篇
  1987年   5篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1981年   2篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1974年   3篇
  1973年   4篇
  1966年   2篇
  1964年   2篇
  1942年   2篇
  1941年   3篇
  1940年   4篇
  1915年   2篇
排序方式: 共有416条查询结果,搜索用时 31 毫秒
1.
The human bladder carcinoma cell lines RT4 and T24 and the human breast adenocarcinoma cell line MCF-7 were found to be negative for vimentin when studied by means of immunofluorescence and immunoblotting. Northern blot analysis revealed that these cells lacked detectable levels of vimentin mRNA with the exception of T24, which contains trace amounts of vimentin mRNA compared to the RNA level in vimentin-containing HeLa cells. CAT assays performed on these cells showed that a hamster vimentin promoter is inactive in RT4 and MCF-7 cells. In the vimentin-lacking cells, the binding of polyribosomes, specific mRNAs, and translation factor eIF-2 alpha to the cytoskeletal fraction was examined. Our results indicate that the presence of a vimentin network is not crucial for the association of the translation machinery with the cytoskeleton. Furthermore, in these vimentin-negative cell lines the immunofluorescence staining pattern of eIF-2 alpha shows a fibro-granular structure that has no resemblance to the cytokeratin or actin cytoskeleton present in these cells.  相似文献   
2.
We have introduced a hybrid gene, pVVim2, composed of the 5' region of the hamster vimentin gene encoding the head and rod domain of vimentin and the 3' region of the hamster desmin gene encoding the tail domain of desmin, into the germ line of mice by pronuclear injection. RNA and protein analysis of mice transgenic for this construct showed that the pVVim2 gene was expressed at high levels in a developmental and tissue-specific manner. This indicates that the vimentin-derived segment of the fusion gene contains all the regulatory elements required for vimentin-specific expression. Immunohistochemical staining of fibroblast cultures derived from the transgenic mice with antibodies specific for vimentin and desmin demonstrated that the pVVim2 protein is assembled into filaments that co-localize with the endogenous vimentin filaments. The expression of pVVim2 protein in mesenchymal cells does not interfere with the function of vimentin in these cells.  相似文献   
3.
Twenty-four university students received differential Pavlovian conditioning with two colored stimuli separately accompanied by shock, and two other colored stimuli separately presented without shock. The reinforced and nonreinforced pairs of stimuli both contained complementary elements. After differentiation between the reinforced and nonreinforced elements was established, the complementary pairs were each additively mixed, (i.e., presented at the same time and in the same locus), producing two identical white compounds (established by pilot study). The subjects' skin-conductance responses to the two compounds showed that their different conditioning histories did not result in different responses. Rather, a simple declining function was obtained, resembling habituation or extinction. It was concluded that the definition of the conditional stimulus as a physical event is inappropriate in studies in which physically different stimuli may result in identical internal processes (or phenomenologic experiences)--for example, in additive color mixture.  相似文献   
4.
2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 1341. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis, cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harbonring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.  相似文献   
5.
We have evaluated codon usage bias in Drosophila histone genes and have obtained the nucleotide sequence of a 5,161-bp D. hydei histone gene repeat unit. This repeat contains genes for all five histone proteins (H1, H2a, H2b, H3, and H4) and differs from the previously reported one by a second EcoRI site. These D. hydei repeats have been aligned to each other and to the 5.0-kb (i.e., long) and 4.8-kb (i.e., short) histone repeat types from D. melanogaster. In each species, base composition at synonymous sites is similar to the average genomic composition and approaches that in the small intergenic spacers of the histone gene repeats. Accumulation of synonymous changes at synonymous sites after the species diverged is quite high. Both of these features are consistent with the relatively low codon usage bias observed in these genes when compared with other Drosophila genes. Thus, the generalization that abundantly expressed genes in Drosophila have high codon bias and low rates of silent substitution does not hold for the histone genes.   相似文献   
6.
Abstract: DNA damage activates a nuclear enzyme poly(ADP-ribose) synthetase (PARS) that facilitates DNA repair by adding multiple ADP-ribose groups to nuclear proteins such as histones and PARS itself. N -Methyl- d -aspartate neurotoxicity may involve DNA damage excessively activating PARS to deplete its substrate NAD, as PARS inhibitors prevent this toxicity. We now show that PARS is rapidly and markedly activated in PC12 cells following treatment with neurotoxic agents, including the amyloid β-protein, hydrogen peroxide, N -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and its active metabolite N -methyl-4-phenylpyridine (MPP+). With MPP+, PARS activity is increased fivefold in 1 h and 20-fold by 3 h. By contrast, direct measurement of DNA damage by the terminal-deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay shows no significant increase by 3 h and less than fourfold by 24 h. These findings indicate that PARS activity can provide a simple, sensitive, and early index of DNA damage following neurotoxic insults.  相似文献   
7.
The relationship between extracellular palmitate and the accumulation of long-chain fatty-acyl coenzyme A with that of high-energy phosphate metabolism was investigated in the isolated perfused diabetic rat heart. Hearts were perfused with a glucose/albumin buffer supplemented with 0, 0.5, 1.2 or 2.0 mM palmitate. 31P-NMR was used to analyze phosphocreatine and ATP metabolism during 1 h of constant-flow recirculation perfusion. At the end of perfusion, frozen samples were taken for chemical analysis of high-energy phosphates and the free and acylated fractions of coenzyme A and carnitine. Perfusion of diabetic hearts with palmitate, unlike control hearts, caused a time-dependent and concentration-dependent reduction in ATP, despite normal and constant phosphocreatine. Concentrations of acid-soluble coenzyme A, long-chain-acyl coenzyme A and total tissue coenzyme A were elevated in palmitate-perfused diabetic hearts, while the total tissue carnitine pool was decreased. Increases in long-chain-acyl coenzyme A correlated with the reduction in myocardial ATP. This reduction in ATP could not be adequately explained by alterations in heart rate, perfusion pressure or vascular resistance.  相似文献   
8.
The influence of serotonergic and adrenergic antagonists on serum prolactin levels was studied in ketamine anesthetized monkeys. Methysergide, a serotonergic receptor blocker, at 0.035, 0.1 and 1 mg/kg body weight induced a rapid and transient increase in serum prolactin. Cyproheptadine, another serotonergic receptor blocker, at 0.05, 0.5 and 1 mg/kg induced a rapid and sustained increase in serum prolactin. SQ 10631, a third serotonergic receptor blocker, had a minimal effect on increasing basal prolactin levels even at doses as high as 10 mg/kg. Propranolol, a β adrenergic blocker, at a dose of 5 mg/kg induced a small sustained increase in serum prolactin, while a lower dose (1 mg/kg) had a slight but significant effect. Phentolamine, an α adrenergic receptor blocker, at a dose of 5 mg/kg induced a rapid and transient increase in plasma prolactin while a lower dose (1 mg/kg) had no effect. Phenoxybenzamine, a potent α adrenergic receptor blocker, had only a minimal effect on prolactin release even at doses of 3 and 5 mg/kg. It appears that the time course and extent of prolactin release differs among neural antagonists even within the same biogenic amine system.  相似文献   
9.
The influence of adrenergic receptor blockers on the prolactin releasing effect of methysergide and cyproheptadine was examined in sexually mature female monkeys under ketamine anesthesia. Propranolol, a β-adrenergic blocker, at a dose of 1 mg/kg did not alter the prolactin releasing action of 0.1 mg/kg of methysergide but significantly potentiated (P < 0.025) the prolactin releasing action of 0.5 mg/kg of cyproheptadine. Phentolamine and phenoxybenzamine, both α-adrenergic blockers, at 1 mg/kg blunted the prolactin releasing effect of methysergide and cyproheptadine, but the pattern of prolactin blockade was different between the two putative antiserotonergic drugs. The prior administration of apomorphine, 4 mg/kg, a dopamine receptor stimulator, blocked the prolactin releasing effect of methysergide and cyproheptadine. Evidence presented here and from the literature indicate that the prolactin releasing action of methysergide and cyproheptadine is mediated by an antidopaminergic action directly on the pituitary.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号