首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Trypanosoma cruzi, the causative agent of Chagas' disease (CD), is a substantial public health concern in Latin America. Laboratory mice inoculated with T. cruzi have served as important animal models of acute CD. Host hypoferremic responses occur during T. cruzi infection; therefore, it has been hypothesized that T. cruzi requires iron for optimal growth in host cells and, unlike extracellular pathogens, may benefit from host hypoferremic responses. Recent technological improvements of X-ray fluorescence are useful for diagnostics or monitoring in biomedical applications. The goal of our study was to determine whether the iron availabilities in Swiss and C57BL/6 mice differ during the acute phase of T. cruzi infection and whether the availability correlates with oxidative stress in the susceptible and resistant phenotypes identified in these mice. Our results showed that the decrease in iron levels in the skin of resistant infected mice correlated with the increase in oxidative stress associated with anemia and the reduction in parasite burden.  相似文献   
2.
Neutrophils release fibrous traps of DNA, histones, and granule proteins known as neutrophil extracellular traps (NETs), which contribute to microbicidal killing and have been implicated in autoimmunity. The role of NET formation in the host response to nonbacterial pathogens is not well-understood. In this study, we investigated the release of NETs by human neutrophils upon their interaction with Trypanosoma cruzi (Y strain) parasites. Our results showed that human neutrophils stimulated by T. cruzi generate NETs composed of DNA, histones, and elastase. The release occurred in a dose-, time-, and reactive oxygen species-dependent manner to decrease trypomastigote and increase amastigote numbers of the parasites without affecting their viability. NET release was decreased upon blocking with antibodies against Toll-like receptors 2 and 4. In addition, living parasites were not mandatory in the release of NETs induced by T. cruzi, as the same results were obtained when molecules from its soluble extract were tested. Our results increase the understanding of the stimulation of NETs by parasites, particularly T. cruzi. We suggest that contact of T. cruzi with NETs during Chagas’s disease can limit infection by affecting the infectivity/pathogenicity of the parasite.  相似文献   
3.
Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.  相似文献   
4.
Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas' disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas' disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.  相似文献   
5.
Suppression of host lymphoproliferative responses to mitogens and Ag is characteristically seen during acute infection with the protozoan parasite Trypanosoma cruzi. We investigated the reciprocal regulation of prostaglandins (PG), TNF-alpha, and nitric oxide (NO) production and their effects on cytokine production and lymphoproliferative responses to parasite Ag and to Con A by spleen cells (SC) from T.-cruzi-infected mice. Large amounts of PGE2, TNF-alpha, and NO were produced during infection. TNF-alpha stimulated PG and NO synthesis, while both mediators inhibited TNF-alpha synthesis. Blocking PG also reduced NO synthesis indicating that PG stimulate NO production. Treatment with indomethacin or NMLA stimulated lymphoproliferation on days 6 and 22 of infection; on day 14, when suppression of proliferation and NO production was maximal, combined inhibition of NO and PG production restored parasite Ag specific and Con A proliferative responses. Blocking PG or NO production increased IL-2, IFN-gamma, and TNF-alpha, but not IL-12 production by SC; IL-10 levels were not reduced. Indomethacin-treated infected mice had higher mortality compared to untreated infected animals. The data indicate that PG, together with NO and TNF-alpha, participate in a complex circuit that controls lymphoproliferative and cytokine responses in T. cruzi infection.  相似文献   
6.
Antineoplastic chemotherapy still consists in the major first-line therapeutics against cancer. Several reports have described the immunomodulatory effects of these drugs based on in vitro treatment, but no previous data are known about these effects in patients and its association with immunological-mediated toxicity. In this study, we first characterize the immunological profile of advanced breast cancer patients treated with doxorubicin and paclitaxel protocols, immediately after chemotherapy infusion. Our findings included an immediate plasmatic reduction in IL-1, IL-10, and TNF-α levels in doxorubicin-treated patients, as well as high levels of IL-10 in paclitaxel patients. Further, it was demonstrated that both drugs led to leukocytes oxidative burst impairment. In vitro analysis was performed exposing healthy blood to both chemotherapics in the same concentration and time of exposition of patients, resulting in low IL-10 and high IL-1β in doxorubicin exposition, as low TNF-α and high IL-1 in paclitaxel treatment. Nitric oxide levels were not altered in both in vivo and in vitro treatments. In conclusion, our data revealed for the first time that the immediate effects of chemotherapy could be mediated by cytokines signaling in patients and that the results observed in patients could be a resultant of host immune cells activation.  相似文献   
7.
The genus Phytomonas comprises trypanosomatids that can parasitize a broad range of plant species. These flagellates can cause diseases in some plant families with a wide geographic distribution, which can result in great economic losses. We have demonstrated previously that Phytomonas serpens 15T, a tomato trypanosomatid, shares antigens with Trypanosoma cruzi, the agent of human Chagas disease. Herein, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins of P. serpens 15T that are recognized by sera from patients with Chagas disease. After 2D-electrophoresis of whole-cell lysates, 31 peptides were selected and analyzed by tandem mass spectrometry. Twenty-eight polypeptides were identified, resulting in 22 different putative proteins. The identified proteins were classified into 8 groups according to biological process, most of which were clustered into a cellular metabolic process category. These results generated a collection of proteins that can provide a starting point to obtain insights into antigenic cross reactivity among trypanosomatids and to explore P. serpens antigens as candidates for vaccine and immunologic diagnosis studies.  相似文献   
8.
Trypanosoma cruzi infection in mice is associated with severe hematological changes, including anemia, which may contribute to mortality. TNF-alpha and nitric oxide (NO) play a critical role in establishing host resistance to this pathogen. We hypothesized that phagocyte-derived NO damages erythrocytes and contributes to the anemia observed during T. cruzi infection. To test this hypothesis, two strains of mice that differed in susceptibility and NO response to T. cruzi infection were used in these studies. We also blocked endogenous NO production by aminoguanidine (AG) treatment or blocked TNF-alpha with a neutralizing antibody and used mice that cannot produce phagocyte-derived NO (C57BL/6 iNOS(-/-)). Following infection with T. cruzi, resistant (C57BL/6) and susceptible (Swiss) mice displayed a parasitemia that peaked at the same time (i.e., day 9), yet parasitemia was 3-fold higher in Swiss mice (P < 0.05). All Swiss mice were dead by day 23 post-infection, while no C57BL/6 mice died during the study. At 14 days post-infection anemia in C57BL/6 mice was more severe than in Swiss mice. Treatment of both strains with the NO inhibitor, AG (50 mg/kg), and the use of iNOS(-/-) mice, revealed that the anemia in T. cruzi-infected mice is not caused by NO. However, the reticulocytosis that occurs during infection was significantly reduced after treatment with AG in both Swiss and C57BL/6 mice (P < 0.05). In addition, we showed that neutralization of TNF-alpha in vivo induced a significant increase in circulating reticulocytes in T. cruzi-infected C57BL/6 mice (P < 0.05), but did not modify other hematologic parameters in these mice. The evaluation of the oxidative stress after induction by t-butyl hydroperoxide (t-BHT) revealed that the treatment with AG completely protected against NO-mediated haemoglobin oxidation. Further, treatment with AG, but not with anti-TNF-alpha, protected against the infection-induced reduction of antioxidant capacity of erythrocytes as assessed by oxygen uptake and induction time. In summary, this is the first report showing the participation of NO and TNF-alpha in the oxidative stress to erythrocytes in acute T. cruzi infection. Further, our data suggest that NO does not play a direct role in development of the anemia. However, NO may contribute to other hematological changes noted during T. cruzi infection, such as the elevation of circulating reticulocytes and the reduction in circulating leukocytes and neutrophils.  相似文献   
9.
Sepsis is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors, impaired tissue perfusion, and multiple organ failure. During exercise training (ET), dynamic cardiovascular adjustments take place to maintain proper blood pressure and adjust blood supply to different vascular beds. The aim of this study was to investigate whether ET protects against the cardiovascular abnormalities induced by LPS, a model of experimental endotoxemia, and to evaluate the role of nitric oxide (NO) in pulmonary edema. Wistar rats were subjected to swimming training (up to 1 h/day, 5 days/week for 4 weeks) after which their femoral artery and vein were catheterized. LPS (5 mg/kg, i.v.), injected in control (C) and trained animals (ET), promoted 3 distinct phases in mean arterial pressure (MAP) and heart rate (HR). After ET the alterations in MAP were attenuated. The ET animals showed a lower pulmonary edema index (PEI) after LPS (C=0.65+/-0.01; ET=0.60+/-0.02), which was attenuated after treatment with aminoguanidine in both groups (C=0.53+/-0.02; ET=0.53+/-0.02, p<0.05). After l-NAME, PEI was enhanced numerically in the C and was statistically higher in the ET group (C=0.73+/-0.05; ET=1.30+/-0.3, p<0.05). 7-nitroindazole did not promote any alteration in either group. The adaptations promoted by ET seem to be beneficial, counteracting the cardiovascular abnormalities and pulmonary edema seen in septicemia induced by LPS. The results suggest that iNOS aggravates and cNOS protects against this pulmonary edema.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号